ترغب بنشر مسار تعليمي؟ اضغط هنا

202 - Manuel Drees 2012
This is the mini-review on Dark Matter in the 2012 edition of the Particle Data Groups Review of Particle Properties. After briefly summarizing the arguments in favor of the existence of Dark Matter, we list possible candidates, ranging in mass from a fraction of an eV (e.g., axions) to many solar masses (e.g., primordial black holes), and discuss ways to detect them. The main emphasis is on Weakly Interacting Massive Particles (WIMPs). A large international effort is being made to detect them directly, or else to detect their annihilation products. We explain why we consider all claims to have established a positive signal for WIMPs in either direct or indirect detection to be premature. We also introduce the concept of a {it WIMP safe} minimal mass; below this mass, the interpretation of a given direct search experiment depends strongly on the tail of the WIMP velocity distribution and/or on the experimental energy resolution.
Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. For understanding the properties of WIMPs and identifying them among new particles produced at colliders (hopefully in the near future), determinations of their mass and their couplings on nucleons from direct Dark Matter detection experiments are essential. Based on our method for determining the WIMP mass model-independently from experimental data, we present a way to also estimate the spin-independent (SI) WIMP-nucleon coupling by using measured recoil energies directly. This method isindependent of the as yet unknown velocity distribution of halo WIMPs. In spite of the uncertainty of the local WIMP density (of a factor of ~ 2), at least an upper limit on the SI WIMP-nucleon coupling could be given, once two (or more) experiments with different target nuclei obtain positive signals. In a background-free environment, for a WIMP mass of 100 GeV its SI coupling on nucleons could in principle be estimated with a statistical error of only ~ 15% with just 50 events from each experiment.
Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. We developed a model-independent method for determining the WIMP mass by using data (i.e., measured recoil energies) of direct detection experiments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP-nucleus cross section. It requires however positive signals from at least two detectors with different target nuclei. At the first phase of this work we found a systematic deviation of the reconstructed WIMP mass from the real one for heavy WIMPs. Now we improved this method so that this deviation can be strongly reduced for even very high WIMP mass. The statistical error of the reconstructed mass has also been reduced. In a background-free evironment, a WIMP mass of ~ 50 GeV could in principle be determined with an error of ~ 35% with only 2 times 50 events.
Weakly Interacting Massive Particles (WIMPs) are one of the leading candidates for Dark Matter. We develop a model-independent method for determining the mass $m_chi$ of the WIMP by using data (i.e., measured recoil energies) of direct detection expe riments. Our method is independent of the as yet unknown WIMP density near the Earth, of the form of the WIMP velocity distribution, as well as of the WIMP-nucleus cross section. However, it requires positive signals from at least two detectors with different target nuclei. In a background-free environment, $m_chi sim 50$ GeV could in principle be determined with an error of $sim 35%$ with only $2 times 50$ events; in practice upper and lower limits on the recoil energy of signal events, imposed to reduce backgrounds, can increase the error. The method also loses precision if $m_chi$ significantly exceeds the mass of the heaviest target nucleus used.
Weakly interacting massive particles (WIMPs) are one of the leading candidates for Dark Matter. So far we can use direct Dark Matter detection to estimate the mass of halo WIMPs only by fitting predicted recoil spectra to future experimental data. He re we develop a model-independent method for determining the WIMP mass by using experimental data directly. This method is independent of the as yet unknown WIMP density near the Earth as well as of the WIMP-nuclear cross section and can be used to extract information about WIMP mass with O(50) events.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا