ترغب بنشر مسار تعليمي؟ اضغط هنا

Even if Weyl semimetals are characterized by quasiparticles with well-defined chirality, exploiting this experimentally is severely hampered by Weyl lattice-fermions coming in pairs with opposite chirality, typically causing the net chirality picked up by experimental probes to vanish. Here we show this issue can be circumvented in a controlled manner when both time-reversal- and inversion- symmetry are broken. To this end, we investigate chirality-disbalance in the carbide family RMC$_2$ (R a rare-earth and M a transition metal), showing several members to be Weyl semimetals. Using the noncentrosymmetric ferromagnet NdRhC$_2$ as an illustrating example, we show that an odd number of Weyl nodes can be stabilized at its Fermi surface by properly tilting its magnetization. The tilt direction determines the sign of the resulting net chirality, opening up a simple route to control it.
We have studied potassium-intercalated bulk HfS$_2$ and HfSe$_2$ by combining transmission electron energy loss spectroscopy, angle-resolved photoemission spectroscopy and density functional theory calculations. Calculations of the formation energies and the evolution of the energies of the charge carrier plasmons as a function of the potassium content show that certain, low potassium concentrations $x$ are thermodynamically unstable. This leads to the coexistence of undoped and doped domains if the provided amount of the alkali metal is insufficient to saturate the whole crystal with the minimum thermodynamically stable potassium stoichiometry. Beyond this threshold concentration the domains disappear, while the alkali metal and charge carrier concentrations increase continuously upon further addition of potassium. At low intercalation levels, electron diffraction patterns indicate a significant degree of disorder in the crystal structure. The initial order in the out-of-plane direction is restored at high $x$ while the crystal layer thicknesses expand by 33-36%. Superstructures emerge parallel to the planes which we attribute to the distribution of the alkali metal rather than structural changes of the host materials. The in-plane lattice parameters change by not more than 1%. The introduction of potassium causes the formation of charge carrier plasmons. The observation of this semiconductor-to-metal transition is supported by calculations of the density of states (DOS) and band structures as well as angle-resolved photoemission spectroscopy. The calculated DOS hint at the presence of an almost ideal two-dimensional electron gas at the Fermi level for $x<0.6$. The plasmons exhibit quadratic momentum dispersions which is in agreement with the behavior expected for an ideal electron gas.
Iridate oxides on a honeycomb lattice are considered promising candidates for realization of quantum spin liquid states. We investigate the magnetic couplings in a structural model for a honeycomb iridate K$_2$IrO$_3$, with $C_3$ point group symmetry at the Ir sites, which is an end member of the recently synthesized iridate family K$_x$Ir$_y$O$_2$. Using textit{ab-initio} quantum chemical methods, we elucidate the subtle relationship between the real space symmetry and magnetic anisotropy and show that the higher point group symmetry leads to high frustration with strong magnetic anisotropy driven by the unusually large off-diagonal exchange couplings ($Gamma$s) as opposed to other spin-liquid candidates considered so far. Consequently, large quantum fluctuations imply lack of magnetic ordering consistent with the experiments. Exact diagonalization calculations for the fully anisotropic $K$-$J$-$Gamma$ Hamiltonian reveal the importance of the off-diagonal anisotropic exchange couplings in stabilizing a spin liquid state and highlight an alternative route to stabilize spin liquid states for ferromagnetic $K$.
Using density functional electronic structure calculations, we establish the consequences of surface termination and modification on protected surface-states of metacinnabar (beta-HgS). Whereas we find that the Dirac cone is isotropic and well-separa ted from the valence band for the (110) surface, it is highly anisotropic at the pure (001) surface. We demonstrate that the anisotropy is modified by surface passivation because the topological surface-states include contributions from dangling bonds. Such dangling bonds exist on all pure surfaces within the whole class HgX with X = S, Se, or Te and directly affect the properties of the Dirac cone. Surface modifications also alter the spatial location (depth and decay length) of the topologically protected edge-states which renders them essential for the interpretation of photoemission data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا