ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass $m_X$ and hidden glueballs with mass near the confinement scale $Lambda$. For $m_X sim 1,text{TeV}$ and $Lambda sim 10 0,text{MeV}$, the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order $Lambda^2 / m_X sim 10,text{keV}$. We show that the radiative decays of the excited state can explain the observed 3.5 keV X-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.
We show the existence of a statistically significant, robust detection of a gamma-ray source in the Milky Way Galactic Center that is consistent with a spatially extended signal using about 4 years of Fermi-LAT data. The gamma-ray flux is consistent with annihilation of dark matter particles with a thermal annihilation cross-section if the spatial distribution of dark matter particles is similar to the predictions of dark matter only simulations. We find statistically significant detections of an extended source with gamma-ray spectrum that is consistent with dark matter particle masses of approximately 10 GeV to 1 TeV annihilating to b/b-bar quarks, and masses approximately 10 GeV to 30 GeV annihilating to tau+ tau- leptons. However, a part of the allowed region in this interpretation is in conflict with constraints from Fermi observations of the Milky Way satellites. The biggest improvement over the fit including just the point sources is obtained for a 30 GeV dark matter particle annihilating to b/b-bar quarks. The gamma-ray intensity and spectrum are also well fit with emission from a millisecond pulsar (MSP) population following a density profile like that of low-mass X-ray binaries observed in M31. The greatest goodness-of-fit of the extended emission is with spectra consistent with known astrophysical sources like MSPs in globular clusters or cosmic ray bremsstrahlung on molecular gas. Therefore, we conclude that the bulk of the emission is likely from an unresolved or spatially extended astrophysical source. However, the interesting possibility of all or part of the extended emission being from dark matter annihilation cannot be excluded at present.
Over the past five years, searches in Sloan Digital Sky Survey data have more than doubled the number of known dwarf satellite galaxies of the Milky Way, and have revealed a population of ultra-faint galaxies with luminosities smaller than typical gl obular clusters, L ~ 1000 Lsun. These systems are the faintest, most dark matter dominated, and most metal poor galaxies in the universe. Completeness corrections suggest that we are poised on the edge of a vast discovery space in galaxy phenomenology, with hundreds more of these extreme galaxies to be discovered as future instruments hunt for the low-luminosity threshold of galaxy formation. Dark matter dominated dwarfs of this kind probe the small-scale power-spectrum, provide the most stringent limits on the phase-space packing of dark matter, and offer a particularly useful target for dark matter indirect detection experiments. Full use of dwarfs as dark matter laboratories will require synergy between deep, large-area photometric searches; spectroscopic and astrometric follow-up with next-generation optical telescopes; and subsequent observations with gamma-ray telescopes for dark matter indirect detection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا