ترغب بنشر مسار تعليمي؟ اضغط هنا

A new mechanism for the passive removal of drop on a horizontal surface is described that does not require pre-fabrication of a surface energy gradient. The method relies upon the preparation of alternate hydrophilic/hydrophobic stripes on a surface. When one side of this surface is exposed to steam, with its other surface convectively cooled with cold water, steam condenses as a continuous film on the hydrophilic stripes but as droplets on the hydrophobic stripes. Coalescence leads to a random motion of the center of mass of the fused drops on the surface, which are readily removed as they reach near the boundary of the hydrophobic and hydrophilic zones thus resulting in a net diffusive flux of the coalesced drops from the hydrophobic to the hydrophilic stripes of the surface. Although an in-situ produced thermal gradient due to differential heat transfer coefficients of the hydrophilic and hydrophobic stripes could provide additional driving force for such a motion, it is, however, not a necessary condition for motion to occur. This method of creating directed motion of drops does not require a pre-existing wettability gradient and may have useful applications in thermal management devices.
Sessile drops of soft hydrogels were vibrated vertically by subjecting them to a mechanically induced Gaussian white noise. Power spectra of the surface fluctuation of the gel allowed identification of its resonant frequency that decreases with their mass, but increases with its shear modulus. The principal resonant frequencies of the spheroidal modes of the gel of shear moduli ranging from 55 Pa to 290 Pa were closest to the lowest Rayleigh mode of vibration of a drop of pure water. These observations coupled with the fact that the resonance frequency varies inversely as the square root of the mass in all cases suggest that they primarily correspond to the capillary (or a pseudo-capillary) mode of drop vibration. The contact angles of the gel drops also increase with the modulus of the gel. When the resonance frequencies are corrected for the wetting angles, and plotted against the fundamental frequency scale (gamma/mu)^0.5, all the data collapse nicely on a single plot provided that the latter is shifted by a shear modulus dependent factor (1+mu.L/gamma). A length scale L, independent of both the modulus and the mass of the drop emerges from such a fit.
We study the interaction of two parallel rigid cylinders on the surface of a thin elastic film supported on a pool of liquid. The excess energy of the surface due to the curvature of the stretched film induces attraction of the cylinders that can be quantified by the variation of their gravitational potential energies as they descend into the liquid while still floating on the film. Although the experimental results follow the trend predicted from the balance of the gravitational and elastic energies of the system, they are somewhat underestimated. The origin of this discrepancy is the hysteresis of adhesion between the cylinder and the elastic film that does not allow the conversion of the total available energy into gravitational potential energy as some part of it is recovered in stretching the film behind the cylinders while they approach each other. A modification of the model accounting for the effects of adhesion hysteresis improves the agreement between theoretical and experimental results. The contribution of the adhesion hysteresis can be reduced considerably by introducing a thin hydrogel layer atop the elastic film that enhances the range of attraction of the cylinders (as well as rigid spheres) in a dramatic way. Morphological instabilities in the gel project corrugated paths to the motion of small spheres, thus leading to a large numbers of particles to aggregate along their defects. These observations suggest that a thin hydrogel layer supported on a deformable elastic film affords an effective model system to study elasticity and defects mediated interaction of particles on its surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا