ترغب بنشر مسار تعليمي؟ اضغط هنا

Knowledge-based visual question answering (VQA) requires answering questions with external knowledge in addition to the content of images. One dataset that is mostly used in evaluating knowledge-based VQA is OK-VQA, but it lacks a gold standard knowl edge corpus for retrieval. Existing work leverage different knowledge bases (e.g., ConceptNet and Wikipedia) to obtain external knowledge. Because of varying knowledge bases, it is hard to fairly compare models performance. To address this issue, we collect a natural language knowledge base that can be used for any VQA system. Moreover, we propose a Visual Retriever-Reader pipeline to approach knowledge-based VQA. The visual retriever aims to retrieve relevant knowledge, and the visual reader seeks to predict answers based on given knowledge. We introduce various ways to retrieve knowledge using text and images and two reader styles: classification and extraction. Both the retriever and reader are trained with weak supervision. Our experimental results show that a good retriever can significantly improve the readers performance on the OK-VQA challenge. The code and corpus are provided in https://github.com/luomancs/retriever_reader_for_okvqa.git
636 - Qi Feng , Man Luo , Zhaoyu Zhang 2021
We propose a deep signature/log-signature FBSDE algorithm to solve forward-backward stochastic differential equations (FBSDEs) with state and path dependent features. By incorporating the deep signature/log-signature transformation into the recurrent neural network (RNN) model, our algorithm shortens the training time, improves the accuracy, and extends the time horizon comparing to methods in the existing literature. Moreover, our algorithms can be applied to a wide range of applications such as state and path dependent option pricing involving high-frequency data, model ambiguity, and stochastic games, which are linked to parabolic partial differential equations (PDEs), and path-dependent PDEs (PPDEs). Lastly, we also derive the convergence analysis of the deep signature/log-signature FBSDE algorithm.
178 - Man Luo , Qinghua Guo , Ming Jin 2021
Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to state-of-the-art AMP-based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا