ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of broad emission lines observed in moderate-luminosity active galactic nuclei (AGNs), typical of those found in X-ray surveys of deep fields, with the aim to test the validity of single-epoch virial black hole mass estimates. We have acquired near-infrared (NIR) spectra of AGNs up to z ~ 1.8 in the COSMOS and Extended Chandra Deep Field-South Survey, with the Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope. These low-resolution NIR spectra provide a significant detection of the broad Halpha line that has been shown to be a reliable probe of black hole mass at low redshift. Our sample has existing optical spectroscopy which provides a detection of MgII, a broad emission line typically used for black hole mass estimation at z > 1. We carry out a spectral-line fitting procedure using both Halpha and MgII to determine the virial velocity of gas in the broad line region, the monochromatic continuum luminosity at 3000 A, and the total Halpha line luminosity. With a sample of 43 AGNs spanning a range of two decades in luminosity (i.e., L ~ 10^44-46 ergs/s), we find a tight correlation between the continuum and line luminosity with a distribution characterized by <log(L_3000/L_Halpha)> = 1.52 and a dispersion sigma = 0.16. There is also a close one-to-one relationship between the FWHM of Halpha and of MgII up to 10000 km/s with a dispersion of 0.14 in the distribution of the logarithm of their ratios. Both of these then lead to there being very good agreement between Halpha- and MgII-based masses over a wide range in black hole mass (i.e., M_BH ~ 10^7-9 M_sun). We do find a small offset in MgII-based masses, relative to those based on Halpha, of +0.17 dex and a dispersion sigma = 0.32. In general, these results demonstrate that local scaling relations, using MgII or Halpha, are applicable for AGN at moderate luminosities and up to z ~ 2.
We report on the discovery of a Type 1 quasar, SDSS 0956+5128, with a surprising combination of extreme velocity offsets. SDSS 0956+5128 is a broad-lined quasar exhibiting emission lines at three substantially different redshifts: a systemic redshift of z ~ 0.714 based on narrow emission lines, a broad MgII emission line centered 1200 km/s bluer than the systemic velocity, at z ~ 0.707, and broad Halpha and Hbeta emission lines centered at z ~ 0.690. The Balmer line peaks are 4100 km/s bluer than the systemic redshift. There are no previously known objects with such an extreme difference between broad MgII and broad Balmer emission. The two most promising explanations are either an extreme disk emitter or a high-velocity black hole recoil. However, neither explanation appears able to explain all of the observed features of SDSS 0956+5128, so the object may provide a challenge to our general understanding of quasar physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا