ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass of CoRoT-7b, the first transiting superearth exoplanet, is still a subject of debate. A wide range of masses have been reported in the literature ranging from as high as 8 M_Earth to as low as 2.3 M_Earth. Although most mass determinations g ive a density consistent with a rocky planet, the lower value permits a bulk composition that can be up to 50% water. We present an analysis of the CoRoT-7b radial velocity measurements that uses very few and simple assumptions in treating the activity signal. By only analyzing those radial velocity data for which multiple measurements were made in a given night we remove the activity related radial velocity contribution without any a priori model. We demonstrate that the contribution of activity to the final radial velocity curve is negligible and that the K-amplitude due to the planet is well constrained. This yields a mass of 7.42 +/- 1.21 M_Earth and a mean density of rho = 10.4 +/- 1.8 gm cm^-3. CoRoT-7b is similar in mass and radius to the second rocky planet to be discovered, Kepler-10b, and within the errors they have identical bulk densities - they are virtual twins. These bulk densities lie close to the density - radius relationship for terrestrial planets similar to what is seen for Mercury. CoRoT-7b and Kepler-10b may have an internal structure more like Mercury than the Earth.
In this outlook we describe what could be the next steps of the direct characterization of habitable exoplanets after first the medium and large mission projects and investigate the benefits of the spectroscopic and direct imaging approaches. We show that after third and fourth generation missions foreseeable for the next 100 years, we will face a very long era before being able to see directly the morphology of extrasolar organisms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا