ترغب بنشر مسار تعليمي؟ اضغط هنا

We theoretically study the instability of helical shear flows, in which one fluid component flows along the vortex core of the other, in phase-separated two-component Bose-Einstein condensates at zero temperature. The helical shear flows are hydrodyn amically classified into two regimes: (1) a helical vortex sheet, where the vorticity is localized on the cylindrical interface and the stability is described by an effective theory for ripple modes, and (2) a core-flow vortex with the vorticity distributed in the vicinity of the vortex core, where the instability phenomena are dominated only by the vortex-characteristic modes: Kelvin and varicose modes. The helical shear-flow instability shows remarkable competition among different types of instabilities in the crossover regime between the two regimes.
This paper reports results of the computation of the drag force exerted on an oscillating object in quantum turbulence in superfluid $^4$He. The drag force is calculated on the basis of numerical simulations of quantum turbulent flow about the object . The drag force is proportional to the square of the magnitude of the oscillation velocity, which is similar to that in classical turbulence at high Reynolds number. The drag coefficient is also calculated, and its value is found to be of the same order as that observed in previous experiments. The correspondence between quantum and classical turbulences is further clarified by examining the turbulence created by oscillating objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا