ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchrotron X-rays can be a useful tool to investigate electron acceleration at young supernova remnants (SNRs). At present, since the magnetic field configuration around the shocks of SNRs is uncertain, it is not clear whether electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the acceleration region. We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. We derive analytical formulae of the cutoff shape in each case where the maximum electron energy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands. We find that if the power-law index of the electron spectrum is independently determined by other observations, then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study is helpful in understanding the acceleration mechanism. In particular, it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.
We present a detailed analysis of the X-ray emission from the middle-aged supernova remnant W51C and star-forming region W51B with Suzaku. The soft X-ray emission from W51C is well represented by an optically thin thermal plasma in the non-equilibriu m ionization state with a temperature of $sim$0.7 keV. The elemental abundance of Mg is significantly higher than the solar value. We find no significant feature of an over-ionized plasma in W51C. The hard X-ray emission is spatially coincident with the molecular clouds associated with W51B, overlapping with W51C. The spectrum is represented by an optically thin thermal plasma with a temperature of $sim$5 keV or a powerlaw model with a photon index of $sim$2.2. The emission probably has diffuse nature since its luminosity of 1$times10^{34}$ erg s$^{-1}$ in the 0.5-10 keV band cannot be explained by the emission from point sources in this region. We discuss the possibility that the hard X-ray emission comes from stellar winds of OB stars in W51B or accelerated particles in W51C.
We present a Suzaku X-ray study of the Sagittarius D (Sgr D) HII region in the Galactic center region. Two 18x18 images by the X-ray Imaging Spectrometer (XIS) encompass the entire Sgr D complex. Thanks to the low background, XIS discovered two diffu se sources with low surface brightness and obtained their high signal-to-noise ratio spectra. One is associated with the core of the Sgr D HII region, arising from the young stellar cluster. The other is a new object in the vicinity of the region. We also present 3.5 cm and 6.0 cm radio continuum maps of the new source using the 100 m Green Bank Telescope. We conclude that the source is a new supernova remnant (SNR; G1.2--0.0) based on: (1) the 0.9+/-0.2 keV thermal X-ray spectrum with emission lines from highly ionized atoms; (2) the diffuse nature with an apparent extent of ~10 pc at the Galactic center distance inferred from the X-ray absorption (~8.5x10^{22} cm^{-2}); and (3) the nonthermal radio continuum spectral index (~-0.5). Our discovery of an SNR in the Sgr D HII region leads to a revision of the view of this system, which had been considered to be a thermal HII region and its environment.
We report the Suzaku results of HESS J1614-518, which is the brightest extended TeV gamma-ray source discovered in the Galactic plane survey conducted using the H.E.S.S. telescope. We discovered three X-ray objects in the field of view of the X-ray I maging Spectrometer (XIS), which were designated as Suzaku J1614-5141 (src A), Suzaku J1614-5152 (src B), and Suzaku J1614-5148 (src C). Src A is an extended source located at the peak position of HESS J1614-518, and therefore it is a plausible counterpart to HESS J1614-518. The X-ray flux in the 2-10 keV band is 5e-13 erg/s/cm^2, which is an order of magnitude smaller than the TeV flux. The photon index is 1.7, which is smaller than the canonical value of synchrotron emissions from high-energy electrons found in some supernova remnants. These findings present a challenge to models in which the origin of the TeV emission is the inverse Compton scattering of the cosmic microwave background by accelerated electrons that emit X-rays via synchrotron emission. Src B is located at a relatively dim region in the TeV band image; however, its hydrogen column density is the same as that of src A. Therefore, src B may also be physically related to HESS J1614-518. Src C is a foreground late-type B star. We also discovered a soft extended X-ray emission near HESS J1614-518.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا