ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2.1-s anomalous X-ray pulsar 1E 1547.0-5408 exhibited an X-ray outburst on 2009 January 22, emitting a large number of short bursts. The wide-band all- sky monitor (WAM) on-board Suzaku detected at least 254 bursts in the 160keV-6.2MeV band over the period of January 22 00:57-17:02 UT from the direction of 1E 1547.0-5408. One of these bursts, which occurred at 06:45:13, produced the brightest fluence in the 0.5-6.2MeV range, with an averaged 0.16-6.2MeV flux and extrapolated 25 keV-2 MeV fluence of about 3x10-6 erg cm-2 s-1 and about 3x10-4 erg cm-2, respectively. After pile-up corrections, the time-resolved WAM spectra of this burst were well-fitted in the 0.16-6.2MeV range by two-component models; specifically, a blackbody plus an optically thin thermal bremsstrahlung or a combination of a blackbody and a power-law component with an exponential cutoff. These results are compared with previous works reporting the persistent emission and weaker short bursts followed by the same outburst.
136 - Yukikatsu Terada 2012
The bow shocks of runaway stars with strong stellar winds of over 2000 km s$^{-1}$ can serve as particle acceleration sites. The conversion from stellar wind luminosity into particle acceleration power has an efficiency of the same order of magnitude as those in supernova remnants, based on the radio emission from the bow shock region of runaway star BD+43$^circ$3654 citep{Benaglia10}.If this object exhibits typical characteristics, then runaway star systems can contribute a non-negligible fraction of Galactic cosmic-ray electrons. To constrain the maximum energy of accelerated particles from measurements of possible non-thermal emissions in the X-ray band, Suzaku observed BD+43$^circ$3654 in April 2011 with an exposure of 99 ks. Because the onboard instruments have a stable and low background level, Suzaku detected a possible enhancement over the background of $7.6pm 3.4$ cnt arcmin$^{-2}$ at the bow shock region, where the error represents the 3 sigma statistics only. However, the excess is not significant within the systematic errors of non-X-ray and cosmic-ray backgrounds of the X-ray Imaging Spectrometer, which are $pm 6.0$ and $pm 34$ cnt arcmin$^{-2}$, respectively, and the 3-sigma upper limit in the X-ray luminosity from the shock region, which is $1.1 times 10^{32}$ erg s$^{-1}$ per 41.2 arcmin$^2$ in the 0.5 to 10 keV band. This result leads to three conclusions: (1) a shock-heating process is inefficient on this system; (2) the maximum energy of electrons does not exceed $sim$ 10 TeV, corresponding to a Lorentz factor of less than $10^7$; and (3) the magnetic field in the shock acceleration site might not be as turbulent as those in pulsar wind nebulae and supernova remnants.
This paper presents a study on the spectral evolution of gamma-ray burst (GRB) prompt emissions observed with the Suzaku Wide-band All-sky Monitor (WAM). By making use of the WAM data archive, 6 bright GRBs exhibiting 7 well-separated fast-rise-expon ential-decay (FRED) shaped light curves are presented and the evaluated exponential decay time constants of the energy-resolved light curves from these FRED peak light curves are shown to indicate significant spectral evolution. The energy dependence of the time constants is well described with a power-law function tau(E) ~ E^gamma, where gamma ~ -(0.34 +/- 0.12) in average, although 5 FRED peaks show consistent value of gamma = -1/2 which is expected in synchrotron or inverse-Compton cooling models. In particular, 2 of the GRBs were located with accuracy sufficient to evaluate the time-resolved spectra with precise energy response matrices. Their behavior in spectral evolution suggests two different origins of emissions. In the case of GRB081224, the derived 1-s time-resolved spectra are well described by a blackbody radiation model with a power-law component. The derived behavior of cooling is consistent with that expected from radiative cooling or expansion of the emission region. On the other hand, the other 1-s time-resolved spectra from GRB100707A is well described by a Band GRB model as well as with the thermal model. Although relative poor statistics prevent us to conclude, the energy dependence in decaying light curve is consistent with that expected in the former emission mechanism model.
Suzaku observations of the blazar OJ 287 were performed in 2007 April 10--13 and November 7--9. They correspond to a quiescent and a flaring state, respectively. The X-ray spectra can be well described with single power-law models in both exposures. The derived X-ray photon index and the flux density at 1 keV were found to be Gamma = 1.65 +- 0.02 and S_{1 keV} = 215 +- 5 nJy, in the quiescent state. In the flaring state, the source exhibited a harder X-ray spectrum (Gamma = 1.50 +- 0.01) with a nearly doubled X-ray flux density S_{1 keV} = 404^{+6}_{-5} nJy. Moreover, significant hard X-ray signals were detected up to ~ 27 keV. In cooperation with the Suzaku, simultaneous radio, optical, and very-high-energy gamma-ray observations were performed with the Nobeyama Millimeter Array, the KANATA telescope, and the MAGIC telescope, respectively. The radio and optical fluxes in the flaring state (3.04 +- 0.46 Jy and 8.93 +- 0.05 mJy at 86.75 Hz and in the V-band, respectively) were found to be higher by a factor of 2--3 than those in the quiescent state (1.73 +- 0.26 Jy and 3.03 +- 0.01 mJy at 86.75 Hz and in the V-band, respectively). No notable gamma-ray events were detected in either observation. The spectral energy distribution indicated that the X-ray spectrum was dominated by inverse Compton radiation in both observations, while synchrotron radiation exhibited a spectral cutoff around the optical frequency. Furthermore, no significant difference in the synchrotron cutoff frequency was found between the quiescent and flaring states. According to a simple synchrotron self-Compton model, the change of the spectral energy distribution is due to an increase in the energy density of electrons with small changes of both the magnetic field strength and the maximum Lorentz factor of electrons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا