ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphs are fundamental data structures and have been employed for centuries to model real-world systems and phenomena. Random walk with restart (RWR) provides a good proximity score between two nodes in a graph, and it has been successfully used in m any applications such as automatic image captioning, recommender systems, and link prediction. The goal of this work is to find nodes that have top-k highest proximities for a given node. Previous approaches to this problem find nodes efficiently at the expense of exactness. The main motivation of this paper is to answer, in the affirmative, the question, `Is it possible to improve the search time without sacrificing the exactness?. Our solution, {it K-dash}, is based on two ideas: (1) It computes the proximity of a selected node efficiently by sparse matrices, and (2) It skips unnecessary proximity computations when searching for the top-k nodes. Theoretical analyses show that K-dash guarantees result exactness. We perform comprehensive experiments to verify the efficiency of K-dash. The results show that K-dash can find top-k nodes significantly faster than the previous approaches while it guarantees exactness.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا