ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigated transport and magnetic properties of NdFeAsO$_{0.9}$F$_{0.1}$ single crystal under hydrostatic pressures up to 50,GPa. The ambient pressure superconductivity at $T_{c} sim$ 45.4,K is fully suppressed at $P_{c} sim$ 21 GPa. Upon furthe r increase of the pressure, the ferromagnetism associated with the order of rare-earth subsystem is induced at the border of superconductivity. Our finding is supported by the hysteresis in the magnetization $M$($H$) loops and the strong increase in the field cooled data, $M$($T$), toward low temperatures. We also show that the temperature evolution of the electrical resistivity as a function of pressure is consistent with a crossover from a Fermi-liquid to non-Fermi-liquid to Fermi-liquid. These results give access to the high-pressure side of the superconducting phase diagram in 1111 type of materials.
This work investigates the high-pressure structure of freestanding superconducting ($T_{c}$ = 4.3,K) boron doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30,GPa range. High-pressure Raman scattering experiments revealed an abrupt change in the linear pressure coefficients and the grain boundary components undergo an irreversible phase change at 14,GPa. We show that the blue shift in the pressure-dependent vibrational modes correlates with the negative pressure coefficient of $T_{c}$ in BDD. The analysis of x-ray diffraction data determines the equation of state of the BDD film, revealing a high bulk modulus of $B_{0}$=510$pm$28,GPa. The comparative analysis of high-pressure data clarified that the sp$^{2}$ carbons in the grain boundaries transform into hexagonal diamond.
The recent discovery of high-temperature superconductivity in single-layer iron selenide has generated significant experimental interest for optimizing the superconducting properties of iron-based superconductors through the lattice modification. For simulating the similar effect by changing the chemical composition due to S doping, we investigate the superconducting properties of high-quality single crystals of FeSe$_{1-x}$S$_{x}$ ($x$=0, 0.04, 0.09, and 0.11) using magnetization, resistivity, the London penetration depth, and low temperature specific heat measurements. We show that the introduction of S to FeSe enhances the superconducting transition temperature $T_{c}$, anisotropy, upper critical field $H_{c2}$, and critical current density $J_{c}$. The upper critical field $H_{c2}(T)$ and its anisotropy are strongly temperature dependent, indicating a multiband superconductivity in this system. Through the measurements and analysis of the London penetration depth $lambda _{ab}(T)$ and specific heat, we show clear evidence for strong coupling two-gap $s$-wave superconductivity. The temperature-dependence of $lambda _{ab}(T)$ calculated from the lower critical field and electronic specific heat can be well described by using a two-band model with $s$-wave-like gaps. We find that a $d$-wave and single-gap BCS theory under the weak-coupling approach can not describe our experiments. The change of specific heat induced by the magnetic field can be understood only in terms of multiband superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا