ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient millimeter wave (mmWave) beam selection in vehicle-to-infrastructure (V2I) communication is a crucial yet challenging task due to the narrow mmWave beamwidth and high user mobility. To reduce the search overhead of iterative beam discovery procedures, contextual information from light detection and ranging (LIDAR) sensors mounted on vehicles has been leveraged by data-driven methods to produce useful side information. In this paper, we propose a lightweight neural network (NN) architecture along with the corresponding LIDAR preprocessing, which significantly outperforms previous works. Our solution comprises multiple novelties that improve both the convergence speed and the final accuracy of the model. In particular, we define a novel loss function inspired by the knowledge distillation idea, introduce a curriculum training approach exploiting line-of-sight (LOS)/non-line-of-sight (NLOS) information, and we propose a non-local attention module to improve the performance for the more challenging NLOS cases. Simulation results on benchmark datasets show that, utilizing solely LIDAR data and the receiver position, our NN-based beam selection scheme can achieve 79.9% throughput of an exhaustive beam sweeping approach without any beam search overhead and 95% by searching among as few as 6 beams.
Efficient link configuration in millimeter wave (mmWave) communication systems is a crucial yet challenging task due to the overhead imposed by beam selection. For vehicle-to-infrastructure (V2I) networks, side information from LIDAR sensors mounted on the vehicles has been leveraged to reduce the beam search overhead. In this letter, we propose a federated LIDAR aided beam selection method for V2I mmWave communication systems. In the proposed scheme, connected vehicles collaborate to train a shared neural network (NN) on their locally available LIDAR data during normal operation of the system. We also propose a reduced-complexity convolutional NN (CNN) classifier architecture and LIDAR preprocessing, which significantly outperforms previous works in terms of both the performance and the complexity.
Wireless communications is often subject to channel fading. Various statistical models have been proposed to capture the inherent randomness in fading, and conventional model-based receiver designs rely on accurate knowledge of this underlying distri bution, which, in practice, may be complex and intractable. In this work, we propose a neural network-based symbol detection technique for downlink fading channels, which is based on the maximum a-posteriori probability (MAP) detector. To enable training on a diverse ensemble of fading realizations, we propose a federated training scheme, in which multiple users collaborate to jointly learn a universal data-driven detector, hence the name FedRec. The performance of the resulting receiver is shown to approach the MAP performance in diverse channel conditions without requiring knowledge of the fading statistics, while inducing a substantially reduced communication overhead in its training procedure compared to centralized training.
This paper considers the problem of casual heart rate tracking during intensive physical exercise using simultaneous 2 channel photoplethysmographic (PPG) and 3 dimensional (3D) acceleration signals recorded from wrist. This is a challenging problem because the PPG signals recorded from wrist during exercise are contaminated by strong Motion Artifacts (MAs). In this work, a novel algorithm is proposed which consists of two main steps of MA Cancellation and Spectral Analysis. The MA cancellation step cleanses the MA-contaminated PPG signals utilizing the acceleration data and the spectral analysis step estimates a higher resolution spectrum of the signal and selects the spectral peaks corresponding to HR. Experimental results on datasets recorded from 12 subjects during fast running at the peak speed of 15 km/hour showed that the proposed algorithm achieves an average absolute error of 1.25 beat per minute (BPM). These experimental results also confirm that the proposed algorithm keeps high estimation accuracies even in strong MA conditions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا