ترغب بنشر مسار تعليمي؟ اضغط هنا

Several observations of the central region of the Hydra I galaxy cluster point to a multi-epoch assembly history. Using our novel FORS2/VLT spectroscopic data set, we were able to map the luminosity-weighted age, [Fe/H] and [$alpha$/Fe] distributions for the stellar populations around the cD galaxy NGC 3311. Our results indicate that the stellar populations follow the trends of the photometric substructures, with distinct properties that may aid to constrain the evolutionary scenarios for the formation of the cluster core.
The formation of intracluster light and of the extended halos around brightest cluster galaxies is closely related to morphological transformation, tidal stripping, and disruption of galaxies in clusters. We analyze Ks- and V-band surface photometry as well as deep long-slit spectra, and establish a link between the structures in the light distribution, the absorption line kinematics, and the LOS velocity distributions of nearby galaxies and planetary nebulae (PNs). The central galaxy NGC 3311 is surrounded by an extended symmetric outer halo with n=10 and an additional, off-centered envelope ~ 50 to the North-East. Its luminosity L_V= 1.2x10^{10} +/- 6.0 x 10^8 L_sun corresponds to ~50 % of the luminosity of the symmetric halo in the same region. Based on measured PN velocities, at least part of the off-centered envelope consists of high-velocity accreted stars. We have also discovered two tidal streams in the cluster center, emerging from the dwarf galaxy HCC 026 and from the S0 galaxy HCC 007. The HCC 026 stream is redshifted by ~1200 km/s with respect to NGC 3311, similarly as HCC 026 itself, a fraction of PNs in the off-centered envelope, and several other dwarf galaxies nearby. The stars in one of the HCC 026 tails are known to be consistent with the low-metallicity population of HCC 026, and our photometry shows that this galaxy is already mostly dissolved in the tidal field. The tidal stream around HCC 007 extends over at least 110 kpc. It is fairly thick and is brighter on the side of the asymmetric outer halo of NGC 3311, which it may join. Its luminosity is several 10^9 L_sun, similar to the luminosity of the stripped-down galaxy HCC 007. The redshift of the stream is determined from a few PN velocities and is similar to that for HCC 007 and HCC 026.
We study the stellar population far into the halo of one of the two brightest galaxies in the Coma cluster, NGC 4889, based on deep medium resolution spectroscopy with FOCAS at the Subaru 8.2m telescope. We fit single stellar population models to the measured line-strength (Lick) indices (Hbeta, Mgb, [MgFe] and <Fe>). Combining with literature data, we construct radial profiles of metallicity, [alpha/Fe] element abundance ratio and age for NGC 4889, from the center out to ~60 kpc (~4Re). We find evidence for different chemical and star formation histories for stars inside and outside 1.2Re = 18 kpc radius. The inner regions are characterized by a steep [Z/H] gradient and high [alpha/Fe] at ~2.5 times solar value. In the halo, between 18 and 60 kpc, the [Z/H] is near-solar with a shallow gradient, while [alpha/Fe] shows a strong negative gradient, reaching solar values at ~60 kpc. We interpret these data in terms of different formation histories for both components. The data for the inner galaxy are consistent with a rapid, quasi-monolithic, dissipative merger origin at early redshifts, followed by one or at most a few dry mergers. Those for the halo argue for later accretion of stars from old systems with more extended star formation histories. The half-light radius of the inner component alone is estimated as ~6 kpc, suggesting a significantly smaller size of this galaxy in the past. This may be the local stellar population signature of the size evolution found for early-type galaxies from high-redshift observations.
77 - Magda Arnaboldi 2010
Diffuse intracluster light (ICL) has now been observed in nearby and in intermediate redshift clusters. Individual intracluster stars have been detected in the Virgo and Coma clusters and the first color-magnitude diagram and velocity measurements ha ve been obtained. Recent studies show that the ICL contains of the order of 10% and perhaps up to 30% of the stellar mass in the cluster, but in the cores of some dense and rich clusters like Coma, the local ICL fraction can be high as 40%-50%. What can we learn from the ICL about the formation of galaxy clusters and the evolution of cluster galaxies? How and when did the ICL form? What is the connection to the central brightest cluster galaxy? Cosmological N-body and hydrodynamical simulations are beginning to make predictions for the kinematics and origin of the ICL. The ICL traces the evolution of baryonic substructures in dense environments and can thus be used to constrain some aspects of cosmological simulations that are most uncertain, such as the modeling of star formation and the mass distribution of the baryonic component in galaxies.
The intracluster light (ICL) is a faint diffuse stellar component in clusters made of stars not bound to individual galaxies. We have carried out a large scale study of this component in the nearby Virgo cluster. The diffuse light is traced using pla netary nebulae (PNe). The PNe are detected in the on-band image due to their strong emission in the [OIII] 5007 line, but disappear in the off-band image. The contribution of Ly-alpha emitters at z=3.14 are corrected statistically using blank field surveys. We have surveyed a total area of 3.3 square degrees in the Virgo cluster with eleven fields located at different radial distances. Those fields located at smaller radii than 80 arcmin from the cluster center contain most of the detected diffuse light. In this central region of the cluster, the ICL has a surface brightness in the range 28.8 - 30 mag per sqarsec in the B band, it is not uniformly distributed, and represents about 7% of the total galaxy light in this area. At distances larger than 80 arcmin the ICL is confined to single fields and individual sub-structures, e.g. in the Virgo sub-clump B, the M60/M59 group. For several fields at 2 and 3 degrees from the Virgo cluster center we set only upper limits. These results indicate that the ICL is not homogeneously distributed in the Virgo core, and it is concentrated in the high density regions of the Virgo cluster, e.g. the cluster core and other sub-structures. Outside these regions, the ICL is confined within areas of 100 kpc in size, where tidal effects may be at work. These observational results link the formation of the ICL with the formation history of the most luminous cluster galaxies.
We present high resolution FLAMES/VLT spectroscopy of intracluster planetary nebula (ICPN) candidates, targeting three new fields in the Virgo cluster core with surface brightness down to mu_B = 28.5. Based on the projected phase space information we separate the old and 12 newly-confirmed PNs into galaxy and intracluster components. The M87 PNs are confined to the extended stellar envelope of M87, within a projected radius of ~ 160 kpc, while the ICPNs are scattered across the whole surveyed region between M87 and M86. The velocity dispersions determined from the M87 PNs at projected radii of 60 kpc and 144 kpc show that the galaxys velocity dispersion profile decreases in the outer halo, down to 78 +/- 25 km/s. A Jeans model for the M87 halo stars in the gravitational potential traced by the X-ray emission fits the observed velocity dispersion profile only if the stellar orbits are strongly radially anisotropic (beta ~= 0.4 at r ~= 10 kpc increasing to 0.8 at the outer edge), and if additionally the stellar halo is truncated at ~= 150 kpc average elliptical radius. From the spatial and velocity distribution of the ICPNs we infer that M87 and M86 are falling towards each other and that we may be observing them just before the first close pass. The inferred luminosity-specific PN numbers for the M87 halo and the ICL are in the range of values observed for old (> 10 Gyr) stellar populations (abridged).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا