ترغب بنشر مسار تعليمي؟ اضغط هنا

Significant clustering around the rarest luminous quasars is a feature predicted by dark matter theory combined with number density matching arguments. However, this expectation is not reflected by observations of quasars residing in a diverse range of environments. Here, we assess the tension in the diverse clustering of visible $i$-band dropout galaxies around luminous $zsim6$ quasars. Our approach uses a simple empirical method to derive the median luminosity to halo mass relation, $L_{c}(M_{h})$ for both quasars and galaxies under the assumption of log-normal luminosity scatter, $Sigma_{Q}$ and $Sigma_{G}$. We show that higher $Sigma_{Q}$ reduces the average halo mass hosting a quasar of a given luminosity, thus introducing at least a partial reversion to the mean in the number count distribution of nearby Lyman-Break galaxies. We generate a large sample of mock Hubble Space Telescope fields-of-view centred across rare $zsim6$ quasars by resampling pencil beams traced through the dark matter component of the BlueTides cosmological simulation. We find that diverse quasar environments are expected for $Sigma_{Q}>0.4$, consistent with numerous observations and theoretical studies. However, we note that the average number of galaxies around the central quasar is primarily driven by galaxy evolutionary processes in neighbouring halos, as embodied by our parameter $Sigma_{G}$, instead of a difference in the large scale structure around the central quasar host, embodied by $Sigma_{Q}$. We conclude that models with $Sigma_{G}>0.3$ are consistent with current observational constraints on high-z quasars, and that such a value is comparable to the scatter estimated from hydrodynamical simulations of galaxy formation.
The bright emission from high-redshift quasars completely conceals their host galaxies in the rest-frame ultraviolet/optical, with detection of the hosts in these wavelengths eluding even the Hubble Space Telescope (HST) using detailed point spread f unction (PSF) modelling techniques. In this study we produce mock images of a sample of z=7 quasars extracted from the BlueTides simulation, and apply Markov Chain Monte Carlo-based PSF modelling to determine the detectability of their host galaxies with the James Webb Space Telescope (JWST). While no statistically significant detections are made with HST, we predict that at the same wavelengths and exposure times JWST NIRCam imaging will detect ~50% of quasar host galaxies. We investigate various observational strategies, and find that NIRCam wide-band imaging in the long-wavelength filters results in the highest fraction of successful quasar host detections, detecting >80% of the hosts of bright quasars in exposure times of 5 ks. Exposure times of ~5 ks are required to detect the majority of host galaxies in the NIRCam wide-band filters, however even 10 ks exposures with MIRI result in <30% successful host detections. We find no significant trends between galaxy properties and their detectability. The PSF modelling can accurately recover the host magnitudes, radii, and spatial distribution of the larger-scale emission, when accounting for the central core being contaminated by residual quasar flux. Care should be made when interpreting the host properties measured using PSF modelling.
We report on a Hubble Space Telescope search for rest-frame ultraviolet emission from the host galaxies of five far-infrared-luminous $zsimeq{}6$ quasars and the $z=5.85$ hot-dust free quasar SDSS J0005-0006. We perform 2D surface brightness modeling for each quasar using a Markov-Chain Monte-Carlo estimator, to simultaneously fit and subtract the quasar point source in order to constrain the underlying host galaxy emission. We measure upper limits for the quasar host galaxies of $m_J>22.7$ mag and $m_H>22.4$ mag, corresponding to stellar masses of $M_ast<2times10^{11}M_odot$. These stellar mass limits are consistent with the local $M_{textrm{BH}}$-$M_ast$ relation. Our flux limits are consistent with those predicted for the UV stellar populations of $zsimeq6$ host galaxies, but likely in the presence of significant dust ($langle A_{mathrm{UV}}ranglesimeq 2.6$ mag). We also detect a total of up to 9 potential $zsimeq6$ quasar companion galaxies surrounding five of the six quasars, separated from the quasars by 1.4-3.2, or 8.4-19.4 kpc, which may be interacting with the quasar hosts. These nearby companion galaxies have UV absolute magnitudes of -22.1 to -19.9 mag, and UV spectral slopes $beta$ of -2.0 to -0.2, consistent with luminous star-forming galaxies at $zsimeq6$. These results suggest that the quasars are in dense environments typical of luminous $zsimeq6$ galaxies. However, we cannot rule out the possibility that some of these companions are foreground interlopers. Infrared observations with the James Webb Space Telescope will be needed to detect the $zsimeq6$ quasar host galaxies and better constrain their stellar mass and dust content.
We examine the properties of the host galaxies of $z=7$ quasars using the large volume, cosmological hydrodynamical simulation BlueTides. We find that the 10 most massive black holes and the 191 quasars in the simulation (with $M_{textrm{UV,AGN}}<M_{ textrm{UV,host}}$) are hosted by massive galaxies with stellar masses $log(M_ast/M_odot)=10.8pm0.2$, and $10.2pm0.4$, which have large star formation rates, of $513substack{+1225 -351}M_odot/rm{yr}$ and $191substack{+288 -120}M_odot/rm{yr}$, respectively. The hosts of the most massive black holes and quasars in BlueTides are generally bulge-dominated, with bulge-to-total mass ratio $B/Tsimeq0.85pm0.1$, however their morphologies are not biased relative to the overall $z=7$ galaxy sample. We find that the hosts of the most massive black holes and quasars are significantly more compact, with half-mass radii $R_{0.5}=0.41substack{+0.18 -0.14}$ kpc and $0.40substack{+0.11 -0.09}$ kpc respectively; galaxies with similar masses and luminosities have a wider range of sizes with a larger median value, $R_{0.5}=0.71substack{+0.28 -0.25}$ kpc. We make mock James Webb Space Telescope (JWST) images of these quasars and their host galaxies. We find that distinguishing the host from the quasar emission will be possible but still challenging with JWST, due to the small sizes of quasar hosts. We find that quasar samples are biased tracers of the intrinsic black hole--stellar mass relation, following a relation that is 0.2 dex higher than that of the full galaxy sample. Finally, we find that the most massive black holes and quasars are more likely to be found in denser environments than the typical $M_{textrm{BH}}>10^{6.5}M_odot$ black hole, indicating that minor mergers play at least some role in growing black holes in the early Universe.
Correlations between black holes and their host galaxies provide insight into what drives black hole-host co-evolution. We use the Meraxes semi-analytic model to investigate the growth of black holes and their host galaxies from high redshift to the present day. Our modelling finds no significant evolution in the black hole-bulge and black hole-total stellar mass relations out to a redshift of 8. The black hole-total stellar mass relation has similar but slightly larger scatter than the black hole-bulge relation, with the scatter in both decreasing with increasing redshift. In our modelling the growth of galaxies, bulges and black holes are all tightly related, even at the highest redshifts. We find that black hole growth is dominated by instability-driven or secular quasar-mode growth and not by merger-driven growth at all redshifts. Our model also predicts that disc-dominated galaxies lie on the black hole-total stellar mass relation, but lie offset from the black hole-bulge mass relation, in agreement with recent observations and hydrodynamical simulations.
We study the sizes, angular momenta and morphologies of high-redshift galaxies using an update of the Meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts $z=0$-$10$. We find that the effective radius of a galaxy disc scales with UV luminosity as $R_epropto L_{textrm{UV}}^{0.33}$ at $z=5$-$10$, and with stellar mass as $R_epropto M_ast^{0.24}$ at $z=5$ but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as $R_e propto (1+z)^{-m}$, where $m=1.98pm0.07$ for galaxies with $(0.3$-$1)L^ast_{z=3}$ and $m=2.15pm0.05$ for galaxies with $(0.12$-$0.3)L^ast_{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than one and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by $sim0.5$ dex from $z=7$ to $z=2$. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with $M_astsimeq10^{10}$-$10^{11.5}M_odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.
We model the triggering of Active Galactic Nuclei (AGN) in galaxy clusters using the semi- analytic galaxy formation model SAGE (?). We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluste r medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with that of AGN and galaxies with intense star formation from a sample of low-redshift, relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if $2.5times10^{-14} < P_{ram} < 2.5times10^{-13}$ Pa and $P_{ram} > 2P_{internal}$; this is consistent with expectations from hydrodynamical simulations of ram-pressure induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا