ترغب بنشر مسار تعليمي؟ اضغط هنا

We present affine Lie algebras generated by the supercovariant derivatives and the supersymmetry generators for the left and right moving modes in the doubled space. Chirality is manifest in our doubled space as well as the T-duality symmetry. We pre sent gauge invariant bosonic and superstring actions preserving the two-dimensional diffeomorphism invariance and the kappa-symmetry where doubled spacetime coordinates are chiral fields. The doubled space becomes the usual space by dimensional reduction constraints.
A superspace with manifest T-duality including Ramond-Ramond gauge fields is presented. The superspace is defined by the double nondegenerate super-Poincare algebras where Ramond-Ramond charges are introduced by central extension. This formalism allo ws a simple treatment that all the supergravity multiplets are in a vielbein superfield and all torsions with dimension 1 and less are trivial. A Green-Schwarz superstring action is also presented where the Wess-Zumino term is given in a bilinear form of local currents. Equations of motion are separated into left and right modes in a suitable gauge.
A superspace formulation of type II superstring background with manifest T-duality symmetry is presented. This manifestly T-dual formulation is constructed in a space spanned by two sets of nondegenerate super-Poincare algebra. Supertorsion constrain ts are obtained from consistency of the kappa-symmetric Virasoro constraints. All superconnections and vielbein fields are solved in terms of a prepotential which is one of the vielbein components. AdS5xS5 background is explained in this formulation.
We present M5 algebra to derive Courant brackets of the generalized geometry of $Toplus Lambda^2T^ast oplus Lambda^5T^ast$: The Courant bracket generates the generalized diffeomorphism including gauge transformations of three and six form gauge field s. The Dirac bracket between selfdual gauge fields on a M5-brane gives a $C^{[3]}$-twisted contribution to the Courant brackets. For M-theory compactified on a five dimensional torus the U-duality symmetry is SO(5,5) and the M5 algebra basis is in the 16-dimensional spinor representation. The M5 worldvolume diffeomorphism constraints can be written as bilinear forms of the basis and transform as a SO(5,5) vector. We also present an extended space spanned by the 16-dimensional coordinates with section conditions determined from the M5 worldvolume diffeomorphism constraints.
We show how the SL(5) duality in M-theory is explained from a canonical analysis of M2-brane mechanics. Diffeomorphism constraints for a M2-brane coupled to supergravity background in d=4 are reformulated in a SL(5) covariant form, in which spatial d iffeomorphism constraints are recast into a SL(5) vector and the generalized metric in the Hamiltonian constraint is quartic in the SL(5) generalized vielbein. The Hamiltonian for a M2 brane has the SL(5) duality symmetry in a background dependent gauge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا