ترغب بنشر مسار تعليمي؟ اضغط هنا

The coordinate space formulation of the Hartree-Fock-Bogoliubov (HFB) method enables self-consistent treatment of mean-field and pairing in weakly bound systems whose properties are affected by the particle continuum space. Of particular interest are neutron-rich, deformed drip-line nuclei which can exhibit novel properties associated with neutron skin. To describe such systems theoretically, we developed an accurate 2D lattice Skyrme-HFB solver {hfbax} based on B-splines. Compared to previous implementations, we made a number of improvements aimed at boosting the solvers performance. These include: explicit imposition of axiality and space inversion, use of the modified Broydens method to solve self-consistent equations, and a partial parallelization of the code. {hfbax} has been benchmarked against other HFB solvers, both spherical and deformed, and the accuracy of the B-spline expansion was tested by employing the multiresolution wavelet method. Illustrative calculations are carried out for stable and weakly bound nuclei at spherical and very deformed shapes, including constrained fission pathways. In addition to providing new physics insights, {hfbax} can serve as a useful tool to assess the reliability and applicability of coordinate-space and configuration-space HFB solvers, both existing and in development.
92 - N. Michel , M.V. Stoitsov 2007
The fast computation of the Gauss hypergeometric function 2F1 with all its parameters complex is a difficult task. Although the 2F1 function verifies numerous analytical properties involving power series expansions whose implementation is apparently immediate, their use is thwarted by instabilities induced by cancellations between very large terms. Furthermore, small areas of the complex plane are inaccessible using only 2F1 power series formulas, thus rendering 2F1 evaluations impossible on a purely analytical basis. In order to solve these problems, a generalization of R.C. Forreys transformation theory has been developed. The latter has been successful in treating the 2F1 function with real parameters. As in real case transformation theory, the large canceling terms occurring in 2F1 analytical formulas are rigorously dealt with, but by way of a new method, directly applicable to the complex plane. Taylor series expansions are employed to enter complex areas outside the domain of validity of power series analytical formulas. The proposed algorithm, however, becomes unstable in general when |a|,|b|,|c| are moderate or large. As a physical application, the calculation of the wave functions of the analytical Poschl-Teller-Ginocchio potential involving 2F1 evaluations is considered.
In the framework of the Density Functional Theory for superconductors, we study the restoration of the particle number symmetry by means of the projection technique. Conceptual problems are outlined and numerical difficulties are discussed. Both are related to the fact that neither the many-body Hamiltonian nor the wave function of the system appear explicitly in the Density Functional Theory. Similar obstacles are encountered in self-consistent theories utilizing density-dependent effective interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا