ترغب بنشر مسار تعليمي؟ اضغط هنا

The object 4C 71.07 is a high-redshift blazar whose spectral energy distribution shows a prominent big blue bump and a strong Compton dominance. We present the results of a two-year multiwavelength campaign led by the Whole Earth Blazar Telescope (WE BT) to study both the quasar core and the beamed jet of this source. The WEBT data are complemented by ultraviolet and X-ray data from Swift, and by gamma-ray data by Fermi. The big blue bump is modelled by using optical and near-infrared mean spectra obtained during the campaign, together with optical and ultraviolet quasar templates. We give prescriptions to correct the source photometry in the various bands for the thermal contribution, in order to derive the non-thermal jet flux. The role of the intergalactic medium absorption is analysed in both the ultraviolet and X-ray bands. We provide opacity values to deabsorb ultraviolet data, and derive a best-guess value for the hydrogen column density through the analysis of X-ray spectra. We estimate the disc and jet bolometric luminosities, accretion rate, and black hole mass. Light curves do not show persistent correlations among flux changes at different frequencies. We study the polarimetric behaviour and find no correlation between polarisation degree and flux, even when correcting for the dilution effect of the big blue bump. Similarly, wide rotations of the electric vector polarisation angle do not seem to be connected with the source activity.
The aim of this white paper is to discuss the observing strategies for the LSST Wide-Fast-Deep that would improve the study of blazars (emission variability, census, environment) and Fast Radio Bursts (FRBs). For blazars, these include the adoption o f: i) a reference filter to allow reconstruction of a well-sampled light curve not affected by colour changes effects; ii) two snapshots/visit with different exposure times to avoid saturation during flaring states; iii) a rolling cadence to get better-sampled light curves at least in some time intervals. We also address the potential importance of Target of Opportunity (ToO) observations of blazar neutrino sources, and the advantages of a Minisurvey with a star trail cadence (see white paper by David Thomas et al.) for both the blazar science and the detection of possible very fast optical counterparts of FRBs.
We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006-2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the GLAST-AGILE Support Progra m (GASP) of the Whole Earth Blazar Telescope (WEBT), as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman Alpha intervening system at z = 0.525. Two major outbursts were observed in 2006-2007 and in 2012-2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio-optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the gamma-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches about 19 per cent during the early stage of the 2012-2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarisation angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour or structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg II broad emission line with an essentially stable flux of 6.2 e-15 erg cm-2 s-1 and a full width at half-maximum of 2053 km s-1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا