ترغب بنشر مسار تعليمي؟ اضغط هنا

(Ga,Mn)As and related diluted magnetic semiconductors play a major role in spintronics research because of their potential to combine ferromagnetism and semiconducting properties in one physical system. Ferromagnetism requires ~1-10% of substitutiona l Mn_Ga. Unintentional defects formed during growth at these high dopings significantly suppress the Curie temperature. We present experiments in which by etching the (Ga,Mn)As surface oxide we achieve a dramatic reduction of annealing times necessary to optimize the ferromagnetic film after growth, and report Curie temperature of 180 K at approximately 8% of Mn_Ga. Our study elucidates the mechanism controlling the removal of the most detrimental, interstitial Mn defect. The limits and utility of electrical gating of the highly-doped (Ga,Mn)As semiconductor are not yet established; so far electric-field effects have been demonstrated on magnetization with tens of Volts applied on a top-gate, field effect transistor structure. In the second part of the paper we present a back-gate, n-GaAs/AlAs/GaMnAs transistor operating at a few Volts. Inspired by the etching study of (Ga,Mn)As films we apply the oxide-etching/re-oxidation procedure to reduce the thickness (arial density of carriers) of the (Ga,Mn)As and observe a large enhancement of the gating efficiency. We report gatable spintronic characteristics on a series of anisotropic magnetoresistance measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا