ترغب بنشر مسار تعليمي؟ اضغط هنا

The understanding of the formation process of massive stars (>8 Msun) is limited, due to theoretical complications and observational challenges. We investigate the physical structure of the large-scale (~10^4-10^5 AU) molecular envelope of the high -mass protostar AFGL2591 using spectral imaging in the 330-373 GHz regime from the JCMT Spectral Legacy Survey. Out of ~160 spectral features, this paper uses the 35 that are spatially resolved. The observed spatial distributions of a selection of six species are compared with radiative transfer models based on a static spherically symmetric structure, a dynamic spherical structure, and a static flattened structure. The maps of CO and its isotopic variations exhibit elongated geometries on scales of ~100, and smaller scale substructure is found in maps of N2H+, o-H2CO, CS, SO2, CCH, and methanol lines. A velocity gradient is apparent in maps of all molecular lines presented here, except SO, SO2, and H2CO. We find two emission peaks in warm (Eup~200K) methanol separated by 12, indicative of a secondary heating source in the envelope. The spherical models are able to explain the distribution of emission for the optically thin H13CO+ and C34S, but not for the optically thick HCN, HCO+, and CS, nor for the optically thin C17O. The introduction of velocity structure mitigates the optical depth effects, but does not fully explain the observations, especially in the spectral dimension. A static flattened envelope viewed at a small inclination angle does slightly better. We conclude that a geometry of the envelope other than an isotropic static sphere is needed to circumvent line optical depth effects. We propose that this could be achieved in envelope models with an outflow cavity and/or inhomogeneous structure at scales smaller than ~10^4 AU. The picture of inhomogeneity is supported by observed substructure in at least six species.
In contrast to extensively studied dense star-forming cores, little is known about diffuse gas surrounding star-forming regions. We study molecular gas in the high-mass star-forming region NGC6334I, which contains diffuse, quiescent components that a re inconspicuous in widely used molecular tracers such as CO. We present Herschel/HIFI observations of CH toward NGC6334I observed as part of the CHESS key program. HIFI resolves the hyperfine components of its J=3/2-1/2 transition, observed in both emission and absorption. The CH emission appears close to the systemic velocity of NGC6334I, while its measured linewidth of 3 km/s is smaller than previously observed in dense gas tracers such as NH3 and SiO. The CH abundance in the hot core is 7 10^-11, two to three orders of magnitude lower than in diffuse clouds. While other studies find distinct outflows in, e.g., CO and H2O toward NGC6334I, we do not detect outflow signatures in CH. To explain the absorption signatures, at least two absorbing components are needed at -3.0 and +6.5 km/s with N(CH)=7 10^13 and 3 10^13 cm^-2. Two additional absorbing clouds are found at +8.0 and 0.0 km/s, both with N(CH)=2 10^13 cm^-2. Turbulent linewidths for the four absorption components vary between 1.5 and 5.0 km/s in FWHM. We constrain physical properties of our CH clouds by matching our CH absorbers with other absorption signatures. In the hot core, molecules such as H2O and CO trace gas that is heated and dynamically influenced by outflow activity, whereas CH traces more quiescent material. The four CH absorbers have column densities and turbulent properties consistent with diffuse clouds: two are located near NGC6334, and two are unrelated foreground clouds. Local density and dynamical effects influence the chemical composition of physical components of NGC6334, causing some components to be seen in CH but not in other tracers, and vice versa.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا