ترغب بنشر مسار تعليمي؟ اضغط هنا

The spin-down of a neutron star, e.g. due to magneto-dipole losses, results in compression of the stellar matter and induces nuclear reactions at phase transitions between different nuclear species in the crust. We show that this mechanism is effecti ve in heating recycled pulsars, in which the previous accretion process has already been compressing the crust, so it is not in nuclear equilibrium. We calculate the corresponding emissivity and confront it with available observations, showing that it might account for the likely thermal ultraviolet emission of PSR J0437-4715.
206 - M.E. Gusakov , 2014
Observations of massive ($M approx 2.0~M_odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter c onsistent with the existence of $2~M_odot$ pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving $sigmaomegarhophisigma^ast$ meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the $ell=0,1$ Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. Use of this scheme allow us to obtain numerical tables with the equation of state, Landau quasiparticle effective masses, adiabatic indices, the $ell=0,1$ Landau Fermi-liquid parameters, and the relativistic entrainment matrix for the selected models of nucleon-hyperon matter. These data are available on-line and suitable for numerical implementation in computer codes modelling various dynamical processes in NSs, in particular, oscillations of superfluid NSs and their cooling.
For the first time nonradial oscillations of superfluid nonrotating stars are self-consistently studied at finite stellar temperatures. We apply a realistic equation of state and realistic density dependent model of critical temperature of neutron an d proton superfluidity. In particular, we discuss three-layer configurations of a star with no neutron superfluidity at the centre and in the outer region of the core but with superfluid intermediate region. We show, that oscillation spectra contain a set of modes whose frequencies can be very sensitive to temperature variations. Fast temporal evolution of the pulsation spectrum in the course of neutron star cooling is also analysed.
We study the effects of finite stellar temperatures on the oscillations of superfluid neutron stars. The importance of these effects is illustrated with a simple example of a radially pulsating general relativistic star. Two main effects are taken in to account: (i) temperature dependence of the entrainment matrix and (ii) the variation of the size of superfluid region with temperature. Four models are considered, which include either one or both of these two effects. Pulsation spectra are calculated for these models, and asymptotes for eigenfrequencies at temperatures close to critical temperature of neutron superfluidity, are derived. It is demonstrated that models that allow for the temperature effect (ii) but disregard the effect (i), yield unrealistic results. Eigenfunctions for the normal- and superfluid-type pulsations are analyzed. It is shown that superfluid pulsation modes practically do not appear at the neutron-star surface and, therefore, can hardly be observed by measuring the modulation of the electromagnetic radiation from the star. The e-folding times for damping of pulsations due to the shear viscosity and nonequilibrium modified Urca processes are calculated and their asymptotes at temperatures close to the neutron critical temperature, are obtained. It is demonstrated that superfluid pulsation modes are damped by 1--3 orders of magnitude faster than normal modes.
34 - M.E. Gusakov 2010
We study transport properties of a strongly interacting superfluid mixture of two Fermi-liquids. A typical example of such matter is the neutron-proton liquid in the cores of neutron stars. To describe the mixture, we employ the Landau theory of Ferm i-liquids, generalized to allow for the effects of superfluidity. We formulate the kinetic equation and analyze linear response of the system to vector (e.g., electromagnetic) perturbation. In particular, we calculate the transverse and longitudinal polarization functions for both liquid components. We demonstrate, that they can be expressed through the Landau parameters of the mixture and polarization functions of noninteracting matter (when the Landau quasiparticle interaction is neglected). Our results can be used, e.g., for studies of the kinetic coefficients and low-frequency long-wavelength collective modes in superfluid Fermi-mixtures.
We calculate the important quantity of superfluid hydrodynamics, the relativistic entrainment matrix for a nucleon-hyperon mixture at arbitrary temperature. In the nonrelativistic limit this matrix is also termed the Andreev-Bashkin or mass-density m atrix. Our results can be useful for modeling the pulsations of massive neutron stars with superfluid nucleon-hyperon cores and for studies of the kinetic properties of superfluid baryon matter.
We calculate the relativistic entrainment matrix Y_ik at zero temperature for nucleon-hyperon mixture composed of neutrons, protons, Lambda and Sigma^- hyperons, as well as of electrons and muons. This matrix is analogous to the entrainment matrix (a lso termed mass-density matrix or Andreev-Bashkin matrix) of non-relativistic theory. It is an important ingredient for modelling the pulsations of massive neutron stars with superfluid nucleon-hyperon cores. The calculation is done in the frame of the relativistic Landau Fermi-liquid theory generalized to the case of superfluid mixtures; the matrix Y_ik is expressed through the Landau parameters of nucleon-hyperon matter. The results are illustrated with a particular example of the sigma-omega-rho mean-field model with scalar self-interactions. Using this model we calculate the matrix Y_ik and the Landau parameters. We also analyze stability of the ground state of nucleon-hyperon matter with respect to small perturbations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا