ترغب بنشر مسار تعليمي؟ اضغط هنا

50 - B. Liu , M.Di Toro , G.Y. Shao 2011
The phase transition of hadronic to quark matter and the boundaries of the mixed hadron-quark coexistence phase are studied within the two Equation of State (EoS) model. The relativistic effective mean field approach with constant and density depende nt meson-nucleon couplings is used to describe hadronic matter, and the MIT Bag model is adopted to describe quark matter. The boundaries of the mixed phase for different Bag constants are obtained solving the Gibbs equations. We notice that the dependence on the Bag parameter of the critical temperatures (at zero chemical potential) can be well reproduced by a fermion ultrarelativistic quark gas model, without contribution from the hadron part. At variance the critical chemical potentials (at zero temperature) are very sensitive to the EoS of the hadron sector. Hence the study of the hadronic EoS is much more relevant for the determination of the transition to the quark-gluon-plasma at finite baryon density and low-T. Moreover in the low temperature and finite chemical potential region no solutions of the Gibbs conditions are existing for small Bag constant values, B < (135 MeV)^4. Isospin effects in asymmetric matter appear relevant in the high chemical potential regions at lower temperatures, of interest for the inner core properties of neutron stars and for heavy ion collisions at intermediate energies.
319 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
310 - V.Giordano , M.Colonna , M.Di Toro 2010
High energy Heavy Ion Collisions (HIC) are studied in order to access nuclear matter properties at high density. Particular attention is paid to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of lar ge fundamental interest, even for the astrophysics implications. Using fully consistent transport simulations built on effective theories we test isospin observables ranging from nucleon/cluster emissions to collective flows (in particular the elliptic, squeeze out, part). The effects of the competition between stiffness and momentum dependence of the Symmetry Potential on the reaction dynamics are thoroughly analyzed. In this way we try to shed light on the controversial neutron/proton effective mass splitting at high baryon and isospin densities. New, more exclusive, experiments are suggested.
129 - M.Di Toro , V.Baran , M.Colonna 2008
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this report we present a selection of new reaction observables in dissipative collisions particularly sensitive to the s ymmetry term of the nuclear Equation of State (Iso-EoS). We will first discuss the Isospin Equilibration Dynamics. At low energies this manifests via the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation with the symmetry term acting as a restoring force. At higher beam energies Iso-EoS effects will be seen in Imbalance Ratio Measurements, in particular from the correlations with the total kinetic energy loss. For fragmentation reactions in central events we suggest to look at the coupling between isospin distillation and radial flow. In Neck Fragmentation reactions important $Iso-EoS$ information can be obtained from the correlation between isospin content and alignement. The high density symmetry term can be probed from isospin effects on heavy ion reactions at relativistic energies (few AGeV range). Rather isospin sensitive observables are proposed from nucleon/cluster emissions, collective flows and meson production. The possibility to shed light on the controversial neutron/proton effective mass splitting in asymmetric matter is also suggested. A large symmetry repulsion at high baryon density will also lead to an earlier hadron-deconfinement transition in n-rich matter. A suitable treatment of the isovector interaction in the partonic EoS appears very relevant.
83 - M.Di Toro , M.Colonna , G.Ferini 2007
We show that the phenomenology of isospin effects on heavy ion reactions at intermediate energies (few AGeV range) is extremely rich and can allow a ``direct study of the covariant structure of the isovector interaction in a high density hadron mediu m. We work within a relativistic transport frame, beyond a cascade picture, consistently derived from effective Lagrangians, where isospin effects are accounted for in the mean field and collision terms. We show that rather sensitive observables are provided by the pion/kaon production (pi^-/pi^+, K^0/K^+ yields). Relevant non-equilibrium effects are stressed. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping effect.
86 - M.Di Toro , M.Colonna , V.Greco 2007
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovect or part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso-EOS effects are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a ``direct study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected ``neutron trapping effect. The importance of studying violent collisions with radioactive beams from low to relativistic energies is finally stressed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا