ترغب بنشر مسار تعليمي؟ اضغط هنا

The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an autom atic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV gamma ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV gamma-rays was followed by a proof-of-principle experiment, using a mixed gamma-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, on the basis of a criterion that combines track length and light intensity per unit length.
A dual-purpose ion-accelerator concept, capable of serving as radiation source in a versatile, nuclear-reaction-based cargo inspection system, is presented. The system will automatically and reliably detect small, operationally-relevant quantities of concealed explosives and special nuclear materials (SNM). It will be cost-effective, employing largely-common hardware, but different reactions/DAQ-modes. Typical expected throughput is 10-20 aviation containers/hr. PACS: 25.20.Dc; 25.40.Ny; 27.20.+n; 29.27.Fh; 79.77.+g; 89.20.Bb; 89.20.Dd Keywords: Cargo inspection; Nuclear-reaction-based methods; Explosives detection; SNM detection
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا