ترغب بنشر مسار تعليمي؟ اضغط هنا

The central engines of Seyfert galaxies are thought to be enshrouded by geometrically thick gas and dust structures. In this article, we derive observable properties for a self-consistent model of such toroidal gas and dust distributions, where the g eometrical thickness is achieved and maintained with the help of X-ray heating and radiation pressure due to the central engine. Spectral energy distributions (SEDs) and images are obtained with the help of dust continuum radiative transfer calculations with RADMC-3D. For the first time, we are able to present time-resolved SEDs and images for a physical model of the central obscurer. Temporal changes are mostly visible at shorter wavelengths, close to the combined peak of the dust opacity as well as the central source spectrum and are caused by variations in the column densities of the generated outflow. Due to the three-component morphology of the hydrodynamical models -- a thin disc with high density filaments, a surrounding fluffy component (the obscurer) and a low density outflow along the rotation axis -- we find dramatic differences depending on wavelength: whereas the mid-infrared images are dominated by the elongated appearance of the outflow cone, the long wavelength emission is mainly given by the cold and dense disc component. Overall, we find good agreement with observed characteristics, especially for those models, which show clear outflow cones in combination with a geometrically thick distribution of gas and dust, as well as a geometrically thin, but high column density disc in the equatorial plane.
336 - M. Orienti 2009
We present archival high spatial resolution VLA and VLBA data of the nuclei of seven of the nearest and brightest Seyfert galaxies in the Southern Hemisphere. At VLA resolution (~0.1 arcsec), the nucleus of the Seyfert galaxies is unresolved, with th e exception of MCG-5-23-16 and NGC 7469 showing a core-jet structure. Three Seyfert nuclei are surrounded by diffuse radio emission related to star-forming regions. VLBA observations with parsec-scale resolution pointed out that in MRK 1239 the nucleus is clearly resolved into two components separated by ~30 pc, while the nucleus of NGC 3783 is unresolved. Further comparison between VLA and VLBA data of these two sources shows that the flux density at parsec scales is only 20% of that measured by the VLA. This suggests that the radio emission is not concentrated in a single central component, as in elliptical radio galaxies, and an additional low-surface brightness component must be present. A comparison of Seyfert nuclei with different radio spectra points out that the ``presence of undetected flux on milli-arcsecond scale is common in steep-spectrum objects, while in flat-spectrum objects essentially all the radio emission is recovered. In the steep-spectrum objects, the nature of this ``missing flux is likely due to non-thermal AGN-related radiation, perhaps from a jet that gets disrupted in Seyfert galaxies because of the denser environment of their spiral hosts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا