ترغب بنشر مسار تعليمي؟ اضغط هنا

The influence of vacancies and interstitial atoms on magnetism in Pu has been considered in frames of the Density Functional Theory (DFT). The relaxation of crystal structure arising due to different types of defects was calculated using the molecula r dynamic method with modified embedded atom model (MEAM). The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb and spin-orbital interactions) method in matrix invariant form was applied to describe correlation effects in Pu with these types of defects. The calculations show that both vacancies and interstitials give rise to local moments in $f$-shell of Pu in good agreement with experimental data for annealed Pu. Magnetism appears due to destroying of delicate balance between spin-orbital and exchange interactions.
The experimental data available up to date in literature corresponding to the paramagnetic - spin density wave transition in nonsuperconducting LaOFeAs are discussed. In particular, we pay attention that upon spin density wave transition there is a r elative decrease of the density of states on the Fermi level and a pseudogap formation. The values of these quantities are not properly described in frames of the density functional theory. The agreement of them with experimental estimations becomes more accurate with the use of fixed spin moment procedure when iron spin moment is set to experimental value. Strong electron correlations which are not included into the present calculation scheme may lead both to the decrease of spin moment and renormalization of energy spectrum in the vicinity of the Fermi level for correct description of discussed characteristics.
Effects of Coulomb correlation on LaOFeAs electronic structure have been investigated by LDA+DMFT(QMC) method. The calculation results show that LaOFeAs is in the regime of intermediate correlation strength with significant part of the spectral densi ty moved from the Fermi energy to Hubbard bands. However the system is not on the edge of metal insulator-transition because increase of the Coulomb interaction parameter value from $U$=4.0 eV to $U$=5.0 eV did not result in insulator state. Correlations affect different d-orbitals not in the same way. $t_{2g}$ states ($xz,yz$ and $x^2-y^2$ orbitals) have higher energy due to crystal filed splitting and are nearly half-filled. Their spectral functions have pseudogap with Fermi energy position on the higher sub-band slope. Lower energy $e_g$ set of d-orbitals ($3z^2-r^2$ and $xy$) have significantly larger occupancy values with typically metallic spectral functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا