ترغب بنشر مسار تعليمي؟ اضغط هنا

Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs towards equilibrium radii wi th zero torque. These radii themselves migrate inwards because of viscous accretion and photoevaporation. We show that as the surface density and temperature fall, the planet orbital migration and disk depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet. When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density is already too low to drive substantial further migration. A higher mass planet, of 10 Earth masses, can open a gap during the late evolution of the disk, and stops migrating. Low mass planets, with 1 or 0.1 Earth masses, released beyond 1 AU in our models, avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent planet population synthesis models.
158 - A.-K. Jappsen 2009
The formation of the first stars out of metal-free gas appears to result in stars at least an order of magnitude more massive than in the present-day case. We here consider what controls the transition from a primordial to a modern initial mass funct ion. It has been proposed that this occurs when effective metal line cooling occurs at a metallicity threshold of Z/Z_sun > 10^{-3.5}. We study the influence of low levels of metal enrichment on the cooling and collapse of initially ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics simulations with particle splitting. Our initial conditions represent protogalaxies forming within a previously ionized H ii region that has not yet had time to cool and recombine. These differ considerably from those used in simulations predicting a metallicity threshold, where the gas was initially cold and only partially ionized. In the centrally condensed potential that we study here, a wide variety of initial conditions for the gas yield a monolithic central collapse. Our models show no fragmentation during collapse to number densities as high as 10^5 cm^{-3}, for metallicities reaching as high as 10^{-1} Z_sun in one rotating case, far above the threshold suggested by previous work. Rotation allows for the formation of gravitationally stable gas disks over large fractions of the local Hubble time. Turbulence slows the growth of the central density slightly, but both spherically symmetric and turbulent initial conditions collapse and form a single sink particle. We therefore argue that fragmentation at moderate density depends on the initial conditions for star formation more than on the metal abundances present.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا