ترغب بنشر مسار تعليمي؟ اضغط هنا

The gyromagnetic relation - i.e. the proportionality between the angular momentum $vec L$ (defined by an inertial tensor) and the magnetization $vec M$ - is evidence of the intimate connections between the magnetic properties and the inertial propert ies of ferromagnetic bodies. However, inertia is absent from the dynamics of a magnetic dipole (the Landau-Lifshitz equation, the Gilbert equation and the Bloch equation contain only the first derivative of the magnetization with respect to time). In order to investigate this paradoxical situation, the lagrangian approach (proposed originally by T. H. Gilbert) is revisited keeping an arbitrary nonzero inertial tensor. A dynamic equation generalized to the inertial regime is obtained. It is shown how both the usual gyromagnetic relation and the well-known Landau-Lifshitz-Gilbert equation are recovered at the kinetic limit, i.e. for time scales above the relaxation time $tau$ of the angular momentum.
The dynamical equation of the magnetization has been reconsidered with enlarging the phase space of the ferromagnetic degrees of freedom to the angular momentum. The generalized Landau-Lifshitz-Gilbert equation that includes inertial terms, and the c orresponding Fokker-Planck equation, are then derived in the framework of mesoscopic non-equilibrium thermodynamics theory. A typical relaxation time $tau$ is introduced describing the relaxation of the magnetization acceleration from the inertial regime towards the precession regime defined by a constant Larmor frequency. For time scales larger than $tau$, the usual Gilbert equation is recovered. For time scales below $tau$, nutation and related inertial effects are predicted. The inertial regime offers new opportunities for the implementation of ultrafast magnetization switching in magnetic devices.
A mesoscopic description of spin-transfer effect is proposed, based on the spin-injection mechanism occurring at the junction with a ferromagnet. The effect of spin-injection is to modify locally, in the ferromagnetic configuration space, the density of magnetic moments. The corresponding gradient leads to a current-dependent diffusion process of the magnetization. In order to describe this effect, the dynamics of the magnetization of a ferromagnetic single domain is reconsidered in the framework of the thermokinetic theory of mesoscopic systems. Assuming an Onsager cross-coefficient that couples the currents, it is shown that spin-dependent electric transport leads to a correction of the Landau-Lifshitz-Gilbert equation of the ferromagnetic order parameter with supplementary diffusion terms. The consequence of spin-injection in terms of activation process of the ferromagnet is deduced, and the expressions of the effective energy barrier and of the critical current are derived. Magnetic fluctuations are calculated: the correction to the fluctuations is similar to that predicted for the activation. These predictions are consistent with the measurements of spin-transfer obtained in the activation regime and for ferromagnetic resonance under spin-injection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا