ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we investigate the interaction between spin-zero and spin-one monopoles by making use of an effective field theory based on two-body and four-body interaction parts. In particular, we analyze the formation of bound state of monopole-anti monopole (i.e. monopolium). The magnetic-charge conjugation symmetry is studied in analogy to the usual charge conjugation to define a particle basis, for which we find bound-state solutions with relatively small binding energies and which allows us to identify the bounds on the parameters in the effective Lagrangians. Estimations of their masses, binding energies and scattering lengths are performed as functions of monopole masses and interaction strength in a specific renormalization scheme. We also examine the general validity of the approach and the feasibility of detecting the monopolium.
We examine the non-inertial effects of a rotating frame on a Dirac oscillator in a cosmic string space-time with non-commutative geometry in phase space. We observe that the approximate bound-state solutions are related to the biconfluent Heun polyno mials. The related energies cannot be obtained in a closed form for all the bound states. We find the energy of the fundamental state analytically by taking into account the hard-wall confining condition. We describe how the ground-state energy scales with the new non-commutative term as well as with the other physical parameters of the system.
We investigate the breaking of Lorentz symmetry caused by the inclusion of an external four-vector via a Chern-Simons-like term in the Duffin-Kemmer-Petiau Lagrangian for massless and massive spin-one fields. The resulting equations of motion lead to the appearance of birefringence, where the corresponding photons are split into two propagation modes. We discuss the gauge invariance of the extended Lagrangian. Throughout the paper, we utilize projection operators to reduce the wave-functions to their physical components, and we provide many new properties of these projection operators.
The procedure commonly used in textbooks for determining the eigenvalues and eigenstates for a particle in an attractive Coulomb potential is not symmetric in the way the boundary conditions at $r=0$ and $r rightarrow infty$ are considered. We highli ght this fact by solving a model for the Coulomb potential with a cutoff (representing the finite extent of the nucleus); in the limit that the cutoff is reduced to zero we recover the standard result, albeit in a non-standard way. This example is used to emphasize that a more consistent approach to solving the Coulomb problem in quantum mechanics requires an examination of the non-standard solution. The end result is, of course, the same.
In this paper, we study the covariant Duffin-Kemmer-Petiau (DKP) equation in the space-time generated by a cosmic string and we examine the linear interaction of a DKP field with gravitational fields produced by topological defects and thus study the influence of topology on this system. We highlight two classes of solutions defined by the product of the deficit angle with the angular velocity of the rotating frame. We solve the covariant form of DKP equation in an exact analytical manner for node-less and one-node states by means of an appropriate ansatz.
We utilize group-theoretical methods to develop a matrix representation of differential operators that act on tensors of any rank. In particular, we concentrate on the matrix formulation of the curl operator. A self-adjoint matrix of the curl operato r is constructed and its action is extended to a complex plane. This scheme allows us to obtain properties, similar to those of the traditional curl operator.
The Galilei-covariant fermionic field theories are quantized by using the path-integral method and five-dimensional Lorentz-like covariant expressions of non-relativistic field equations. Firstly, we review the five-dimensional approach to the Galile an Dirac equation, which leads to the Levy-Leblond equations, and define the Galilean generating functional and Greens functions for positive- and negative-energy/mass solutions. Then, as an example of interactions, we consider the quartic self-interacting potential ${lambda} (bar{Psi} {Psi})^2$, and we derive expressions for the 2- and 4-point Greens functions. Our results are compatible with those found in the literature on non-relativistic many-body systems. The extended manifold allows for compact expressions of the contributions in $(3+1)$ space-time. This is particularly apparent when we represent the results with diagrams in the extended $(4+1)$ manifold, since they usually encompass more diagrams in Galilean $(3+1)$ space-time.
We discuss a way to obtain information about higher dimensions from observations by studying a brane-based spherically symmetric solution. The three classic tests of General Relativity are analyzed in details: the perihelion shift of the planet Mercu ry, the deflection of light by the Sun, and the gravitational redshift of atomic spectral lines. The braneworld version of these tests exhibits an additional parameter $b$ related to the fifth-coordinate. This constant $b$ can be constrained by comparison with observational data for massive and massless particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا