ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed temperature-dependent Raman light scattering study of optical phonons in molecular-beam-epitaxy-grown films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c = 29 K and x ~ 0.1, T_ c = 27 K). The main focus of this work is a detailed characterization and microstructural analysis of the films. Based on micro-Raman spectroscopy in combination with x-ray diffraction, energy-dispersive x-ray analysis, and scanning electron microscopy, some of the observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O. In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced softening and narrowing upon cooling below T ~ T_c. Based on control measurements on commercial Cu_{2}O powders and on a comparison to prior Raman scattering studies of other high-temperature superconductors, we speculate that proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be responsible for these anomalies. Experiments on the slightly overdoped La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon anomalies.
We investigate in-plane quasiparticle tunneling across thin film grain boundary junctions (GBJs) of the electron-doped cuprate La$_{2-x}$Ce$_{x}$CuO$_4$ in magnetic fields up to $B=16 $T, perpendicular to the CuO$_2$ layers. The differential conducta nce in the superconducting state shows a zero bias conductance peak (ZBCP) due to zero energy surface Andreev bound states. With increasing temperature $T$, the ZBCP vanishes at the critical temperature $T_capprox29 $K if B=0, and at $T=12 $K for B=16 T. As the ZBCP is related to the macroscopic phase coherence of the superconducting state, we argue that the disappearance of the ZBCP at a field $B_{ZBCP}(T)$ must occur below the upper critical field $B_{c2}(T)$ of the superconductor. We find $B_{ZBCP}(0) approx 25 $T which is at least a factor of 2.5 higher than previous estimates of $B_{c2}(0)$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا