ترغب بنشر مسار تعليمي؟ اضغط هنا

We present updated constraints on the free-streaming of warm dark matter (WDM) particles derived from an analysis of the Lya flux power spectrum measured from high-resolution spectra of 25 z > 4 quasars obtained with the Keck High Resolution Echelle Spectrometer (HIRES) and the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We utilize a new suite of high-resolution hydrodynamical simulations that explore WDM masses of 1, 2 and 4 keV (assuming the WDM consists of thermal relics), along with different physically motivated thermal histories. We carefully address different sources of systematic error that may affect our final results and perform an analysis of the Lya flux power with conservative error estimates. By using a method that samples the multi-dimensional astrophysical and cosmological parameter space, we obtain a lower limit mwdm > 3.3 keV (2sigma) for warm dark matter particles in the form of early decoupled thermal relics. Adding the Sloan Digital Sky Survey (SDSS) Lya flux power spectrum does not improve this limit. Thermal relics of masses 1 keV, 2 keV and 2.5 keV are disfavoured by the data at about the 9sigma, 4sigma and 3sigma C.L., respectively. Our analysis disfavours WDM models where there is a suppression in the linear matter power spectrum at (non-linear) scales corresponding to k=10h/Mpc which deviates more than 10% from a LCDM model. Given this limit, the corresponding free-streaming mass below which the mass function may be suppressed is 2x10^8 Msun/h. There is thus very little room for a contribution of the free-streaming of WDM to the solution of what has been termed the small scale crisis of cold dark matter.
We use the probability distribution function (PDF) of the lya forest flux at z=2-3, measured from high-resolution UVES/VLT data, and hydrodynamical simulations to obtain constraints on cosmological parameters and the thermal state of the intergalacti c medium (IGM) at z 2-3. The observed flux PDF at z=3 alone results in constraints on cosmological parameters in good agreement with those obtained from the WMAP data, albeit with about a factor two larger errors. The observed flux PDF is best fit with simulations with a matter fluctuation amplitude of sigma_8=0.8-0.85 pm 0.07 and an inverted IGM temperature-density relation (gamma ~ 0.5-0.75), consistent with our previous results obtained using a simpler analysis. These results appear to be robust to uncertainties in the quasar (QSO) continuum placement. We further discuss constraints obtained by a combined analysis of the high-resolution flux PDF and the power spectrum measured from the Sloan Digital Sky Survey (SDSS) lya forest data. The joint analysis confirms the suggestion of an inverted temperature-density relation, but prefers somewhat higher values (sigma_8 ~ 0.9) of the matter fluctuation amplitude than the WMAP data and the best fit to the flux PDF alone. The joint analysis of the flux PDF and power spectrum (as well as an analysis of the power spectrum data alone) prefers rather large values for the temperature of the IGM, perhaps suggesting that we have identified a not yet accounted for systematic error in the SDSS flux power spectrum data or that the standard model describing the thermal state of the IGM at z ~ 2-3 is incomplete.
We investigate the effects of non-Gaussianity in the primordial density field on the reionization history. We rely on a semi-analytic method to describe the processes acting on the intergalactic medium (IGM), relating the distribution of the ionizing sources to that of dark matter haloes. Extending previous work in the literature, we consider models in which the primordial non-Gaussianity is measured by the dimensionless non-linearity parameter f_NL, using the constraints recently obtained from cosmic microwave background data. We predict the ionized fraction and the optical depth at different cosmological epochs assuming two different kinds of non-Gaussianity, characterized by a scale-independent and a scale-dependent f_NL and comparing the results to those for the standard Gaussian scenario. We find that a positive f_NL enhances the formation of high-mass haloes at early epochs, when reionization begins, and, as a consequence, the IGM ionized fraction can grow by a factor up to 5 with respect to the corresponding Gaussian model. The increase of the filling factor has a small impact on the reionization optical depth and is of order ~ 10 per cent if a scale-dependent non-Gaussianity is assumed. Our predictions for non-Gaussian models are in agreement with the latest WMAP results within the error bars, but a higher precision is required to constrain the scale dependence of non-Gaussianity.
438 - M. Viel , E. Branchini , K. Dolag 2008
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-alpha flux in the high redshift intergalactic medium. Imprints of non-Ga ussianity are present and are larger at high redshifts. Differences larger than 20 % at z>3 in the flux probability distribution function for high transmissivity regions (voids) are expected for values of the non linearity parameter f_NL=pm 100 when compared to a standard LCDM cosmology with f_NL=0. We investigate also the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc) we expect deviations in the flux bispectrum up to 20% at z~4 (for f_NL=pm 100), significantly larger than deviations of ~ 3% in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-alpha forest, could be possible with future data sets.
43 - S. Borgani , M. Viel 2008
We analyse the evolution of the Intergalactic Medium (IGM) by means of an extended set of large box size hydrodynamical simulations which include pre-heating. We focus on the properties of the z~2 Lyman-alpha forest and on the population of clusters and groups of galaxies at z=0. We investigate the distribution of voids in the Lyman-alpha flux and the entropy-temperature relation of galaxy groups, comparing the simulation results to recent data from high-resolution quasar spectra and from X-ray observations. Pre-heating is included through a simple phenomenological prescription, in which at z=4 the entropy of all gas particles, whose overdensity exceeds a threshold value delta_h is increased to a minimum value K_fl. While the entropy level observed in the central regions of galaxy groups requires a fairly strong pre-heating, with K_fl>100 keV cm^2, the void statistics of the Lyman-alpha forest impose that this pre-heating should take place only in relatively high-density regions, in order not to destroy the cold filaments that give rise to the forest. We conclude that any injection of non-gravitational energy in the diffuse baryons should avoid low-density regions at high redshift and/or take place at relatively low redshift.
202 - J.S. Bolton 2008
We compare the improved measurement of the Lya forest flux probability distribution at 1.7<z<3.2 presented by Kim et al. (2007) to a large set of hydrodynamical simulations of the Lya forest with different cosmological parameters and thermal historie s. The simulations are in good agreement with the observational data if the temperature-density relation for the low density intergalactic medium (IGM), T=T_0 Delta^{gamma-1}, is either close to isothermal or inverted (gamma<1). Our results suggest that the voids in the IGM may be significantly hotter and the thermal state of the low density IGM may be substantially more complex than is usually assumed at these redshifts. We discuss radiative transfer effects which alter the spectral shape of ionising radiation during the epoch of HeII reionisation as a possible physical mechanism for achieving an inverted temperature-density relation at z~3.
We present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high- resolution HIRES spectra at 2.0 < z < 6.4. From the HIRES spectra, we obtain a lower limit of mwdm > 1.2 keV 2 sigma i f the WDM consists of early decoupled thermal relics and mwdm > 5.6 keV (2 sigma) for sterile neutrinos. Adding the Sloan Digital Sky Survey Lyman-alpha flux power spectrum, we get mwdm > 4 keV and mwdm > 28 keV (2 sigma) for thermal relics and sterile neutrinos. These results improve previous constraints by a factor two.
In this paper we investigate the effects that a dynamic dark energy component dominant in the universe at late epochs has on reionization. We follow the evolution of HII regions with the analytic approach of Furlanetto and Oh (2005) in two different universes for which we assume the Peebles and Ratra (2003) and Brax and Martin (2000) quintessence models and we compare our results to the LCDM scenario. We show that, for a fixed ionization efficiency, at the same cosmological epoch the topology of bubbles is dominated by high-mass objects and the characteristic size of the ionized regions is slightly smaller than in the LCDM model, especially at the latest stages of reionization, due to the higher recombination efficiency. As a consequence, the bubbles `epoch of overlap happens earlier than in LCDM. Finally, we show how the different evolution of the HII regions affects the transmission of the high-z QSO spectra, reducing the Lyman flux absorption at small optical depths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا