ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we investigated the magnetocaloric effect (MCE) in one-dimensional magnets with different types of ordering in the Ising model, Heisenberg, XY-model, the standard, planar, and modified Potts models. Exact analytical solutions to MCE as functions of exchange parameters, temperature, values and directions of an external magnetic field are obtained. The temperature and magnetic field dependences of MCE in the presence of frustrations in the system in a magnetic field are numerically computed in detail.
108 - M. V. Medvedev 2012
Merging binaries of compact relativistic objects (neutron stars and black holes) are thought to be progenitors of short gamma-ray bursts and sources of gravitational waves, hence their study is of great importance for astrophysics. Because of the str ong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux (e.g., magnetic-field-dominated outflows, relativistic leptonic winds, electromagnetic and plasma waves). The steady injection of energy by the binary forms a bubble (or a cavity) filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it and predict that such systems can be observed as radio sources a few hours before and after the merger. At much later times, the shock is expected to settle onto the Sedov-von Neumann-Taylor solution, thus resembling an explosion.
43 - M. V. Medvedev 2012
Bubbles in the interstellar medium are produced by astrophysical sources, which continuously or explosively deposit large amount of energy into the ambient medium. These expanding bubbles can drive shocks in front of them, which dynamics is markedly different from the widely used Sedov-von Neumann-Taylor blast wave solution. Here we present the theory of a bubble-driven shock and show how its properties and evolution are determined by the temporal history of the source energy output, generally referred to as the source luminosity law, $L(t)$. In particular, we find the analytical solutions for a driven shock in two cases: the self-similar scaling $Lpropto (t/t_s)^p$ law (with $p$ and $t_s$ being constants) and the finite activity time case, $Lpropto (1-t/t_s)^{-p}$. The latter with $p>0$ describes a finite-time-singular behavior, which is relevant to a wide variety of systems with explosive-type energy release. For both luminosity laws, we derived the conditions needed for the driven shock to exist and predict the shock observational signatures. Our results can be relevant to stellar systems with strong winds, merging neutron star/magnetar/black hole systems, and massive stars evolving to supernovae explosions.
We present results of LDA calculations (band structure, densities of states, Fermi surfaces) for possible iron based superconductor BaFe2Se3 (Ba123) in normal (paramagnetic) phase. Results are briefly compared with similar data on prototype BaFe2As2 and (K,Cs)Fe2Se2 superconductors. Without doping this system is antiferromagnetic with T_N^{exp}~250K and rather complicated magnetic structure. Neutron diffraction experiments indicated the possibility of two possible spin structures (antiferromagnetically ordered plaquettes or zigzags), indistinguishable by neutron scattering. Using LSDA calculated exchange parameters we estimate Neel temperatures for both spin structures within the molecular field approximation and show tau_1 (plaquettes) spin configuration to be more favorable than tau_2 (zigzags).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا