ترغب بنشر مسار تعليمي؟ اضغط هنا

We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wi nd interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGN, they are likely to be important in the cosmological feedback cycles of galaxy formation.
We examine the detailed physics of the feedback mechanism by relativistic AGN jets interacting with a two-phase fractal interstellar medium in the kpc-scale core of galaxies using 29 3D grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud-dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P_jet/L_edd<10^-4, although systems with large cloud complexes ~50 pc require jets of Eddington ratio in excess of 10^-2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm phase material is less than 0.1 and the cloud complexes are smaller than ~25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass-loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within 10 to 100 Myr to velocities that match those observed in a range of high and low redshift radio galaxies hosting powerful radio jets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا