ترغب بنشر مسار تعليمي؟ اضغط هنا

388 - S. Soldi , V. Beckmann , M. Turler 2009
We have analysed the first 15 months of Fermi/LAT data of the radio loud quasar 3C 273. Intense gamma-ray activity has been detected, showing an average flux of F(> 100 MeV) = 1.4e-6 ph/cm^2/s, with a peak at F(> 100 MeV) = 5.6e-6 ph/cm^2/s detected during a flare in September 2009. Together with the brightening of the source, a possible hardening of the gamma-ray spectrum is observed, pointing to a shift of the inverse Compton peak toward higher energies than the 1-10 MeV range in which 3C 273 inverse Compton emission is typically observed to peak. During the 15 months of observations the photon index is measured to vary between 2.4 and 3.3, with an average value of 2.78 +/- 0.03. When compared to the observations at other wavelengths, the gamma-rays show the largest flux variations and we discuss the possibility that two different components are responsible for the inverse Compton hump emission below and above the MeV peak.
428 - S. Soldi , M. Turler (1 2008
We present an update of 3C 273s database hosted by the ISDC, completed with data from radio to gamma-ray observations over the last 10 years. We use this large data set to study the multiwavelength properties of this quasar,especially focussing on it s variability behaviour. We study the amplitude of the variations and the maximum variability time scales across the broad-band spectrum and correlate the light curves in different bands, specifically with the X-rays, to search for possible connections between the emission at different energies. 3C 273 shows variability at all frequencies, with amplitudes and time scales strongly depending on the energy and being the signatures of the different emission mechanisms. The variability properties of the X-ray band imply the presence of either two separate components (possibly a Seyfert-like and a blazar-like) or at least two parameters with distinct timing properties to account for the X-ray emission below and above ~20 keV. The dominant hard X-ray emission is most probably not due to electrons accelerated by the shock waves in the jet as their variability does not correlate with the flaring millimeter emission, but seems to be associated to long-timescale variations in the optical. This optical component is consistent with being optically thin synchrotron radiation from the base of the jet and the hard X-rays would be produced through inverse Compton processes (SSC and/or EC) by the same electron population. We show evidence that this synchrotron component extends from the optical to the near-infrared domain, where it is blended by emission of heated dust that we find to be located within about 1 light-year from the ultraviolet source.
Aims: In this paper we study whether the shock-in-jet model, widely used to explain the outbursting behaviour of quasars, can be used to explain the radio flaring behaviour of the microquasar Cygnus X-3. Method: We have used a method developed to m odel the synchrotron outbursts of quasar jets, which decomposes multifrequency lightcurves into a series of outbursts. The method is based on the Marscher & Gear (1985) shock model, but we have implemented the modifications to the model suggested by Bjornsson & Aslaksen (2000), which make the flux density increase in the initial phase less abrupt. We study the average outburst evolution as well as specific characteristics of individual outbursts and physical jet properties of Cyg X-3. Results: We find that the lightcurves of the February-March 1994 and September 2001 outbursts can be described with the modified shock model. The average evolution shows that instead of the expected synchrotron plateau, the flux density is still increasing during the synchrotron stage. We also find that high frequency peaking outbursts are shorter in duration than the ones peaking at lower frequencies. Finally, we show that the method can be used, complementary to radio interferometric jet imaging, for deriving the physical parameters such as the magnetic field strength and the energy density of relativistic electrons in the jet of Cyg X-3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا