ترغب بنشر مسار تعليمي؟ اضغط هنا

132 - M. Sobotka 2013
A large solar pore with a granular light bridge was observed on October 15, 2008 with the IBIS spectrometer at the Dunn Solar Telescope and a 69-min long time series of spectral scans in the lines Ca II 854.2 nm and Fe I 617.3 nm was obtained. The in tensity and Doppler signals in the Ca II line were separated. This line samples the middle chromosphere in the core and the middle photosphere in the wings. Although no indication of a penumbra is seen in the photosphere, an extended filamentary structure, both in intensity and Doppler signals, is observed in the Ca II line core. An analysis of morphological and dynamical properties of the structure shows a close similarity to a superpenumbra of a sunspot with developed penumbra. A special attention is paid to the light bridge, which is the brightest feature in the pore seen in the Ca II line centre and shows an enhanced power of chromospheric oscillations at 3-5 mHz. Although the acoustic power flux in the light bridge is five times higher than in the quiet chromosphere, it cannot explain the observed brightness.
39 - M. Svanda 2008
The motions of the plasma and structures in and below the solar photosphere is not well understood. The results obtained using various methods cannot be in general considered as consistent, especially in details. In this contribution we show a summar y of the results obtained by the method we have developed recently. To study the photospheric dynamics we apply the local correlation tracking algorithm to the series of full-disc Dopplergrams obtained by Michelson Doppler Imager (MDI) aboard the SOHO satelite. The dominant structure recorded in Dopplergrams is the supergranulation. Under the assumtion that the supergranules are carried by the flow field of the larger scale, we study properties of this underlying velocity field. We perform comparative tests with synthetic data with known properties and with results of the time-distance helioseismology with a great success. A few case studies are shown to demonstrate the performance of the method. We believe that tracking of supergranules makes a perfect sense when studying the large-scale flows in the solar photosphere. The method we demonstrate is suitable to detect large-scale velocity field with effective resolution of 60 and random error of 15 m/s. We believe that our method may provide a powerful tool for studies related to the dynamic behaviour of plasmas in the solar photosphere.
337 - Th. Roudier 2007
We study the influence of large-scale photospheric motions on the estabilization of an eruptive filament, observed on October 6, 7, and 8, 2004, as part of an international observing campaign (JOP 178). Large-scale horizontal flows were invetigated f rom a series of MDI full-disc Dopplergrams and magnetograms. From the Dopplergrams, we tracked supergranular flow patterns using the local correlation tracking (LCT) technique. We used both LCT and manual tracking of isolated magnetic elements to obtain horizontal velocities from magnetograms. We find that the measured flow fields obtained by the different methods are well-correlated on large scales. The topology of the flow field changed significantly during the filament eruptive phase, suggesting a possible coupling between the surface flow field and the coronal magnetic field. We measured an increase in the shear below the point where the eruption starts and a decrease in shear after the eruption. We find a pattern in the large-scale horizontal flows at the solar surface that interact with differential rotation. We conclude that there is probably a link between changes in surface flow and the disappearance of the eruptive filament.
76 - M. Svanda 2007
We use the magnetic butterfly diagram to determine the speed of the magnetic flux transport on the solar surface towards the poles. The manifestation of the flux transport is clearly visible as elongated structures extended from the sunspot belt to t he polar regions. The slopes of these structures are measured and interpreted as meridional magnetic flux transport speed. Comparison with the time-distance helioseismology measurements of the mean speed of the meridional flows at the depth of 3.5--12 Mm shows a generally good agreement, but the speeds of the flux transport and the meridional flow are significantly different in areas occupied by the magnetic field. The local circulation flows around active regions, especially the strong equatorward flows on the equatorial side of active regions affect the mean velocity profile derived by helioseismology, but do not influence the magnetic flux transport. The results show that the mean longitudinally averaged meridional flow measurements by helioseismology may not be used directly in solar dynamo models for describing the magnetic flux transport, and that it is necessary to take into account the longitudinal structure of these flows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا