ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nearby Young Moving Groups (NYMGs) of stars are ideal for the study of evolution circumstellar disks in which planets may form because their ages range from a few Myr to about 100 Myr, about the same as the interval over which planets are thought to form. Their stars are distributed over large regions of the sky. Hence, the Wide Field Infrared Survey Explorer (WISE) which scanned the entire sky in four bands from 3.4 to 22.1 mu provides a database well-suited for the study of members of the NYMGs, particularly those identified after the eras of the IRAS and Spitzer observatories. We report our study of the stars in the epsilon and eta Cha, TW Hya, beta Pic, Tuc-Hor, and AB Dor NYMGs. The WISE Preliminary Release Source Catalog, which covers 57% of the sky, contains data for 64% of the stars in our search lists. WISE detected the 11.6 and 22.1 mu emission of all the previously known disks except for the coldest one, AU Mic. WISE detected no disks in the Tuc-Hor and AB Dor groups, the two oldest in our sample; the frequency of disks detected by WISE decreases rapidly with age of the group. WISE detected a circumstellar disk associated with 2M J0820-8003, a pre-main sequence star with episodic accretion in the ~ 6 Myr old eta Cha cluster. The inner radius of the disk extends close to the star, ~0.02 AU and its luminosity is about a tenth that of the star. The episodic accretion is probably powered by the circumstellar disk discussed here.
110 - M. Simon , g.H. Schaefer 2011
We report angular diameters of HIP 560 and 21547, two F spectral type pre-main sequence members of the beta Pic Moving Group. We used the East-West 314-m long baseline of the CHARA Array. The measured limb-darkened angular diameters of HIP 560 and 21 547 are 0.492+-0.032 and 0.518+-0.009 mas, respectively. The corresponding stellar radii are 2.1 and 1.6 Rsun for HIP 560 and HIP 21547 respectively. These values indicate that the stars are truly young. Analyses using the evolutionary tracks calculated by Siess, Dufour, and Forestini and the tracks of the Yonsei-Yale group yield consistent results. Analyzing the measurements on an angular diameter vs color diagram we find that the ages of the two stars are indistinguishable; their average value is 13+-2 MY. The masses of HIP 560 and 21547 are 1.65+-0.02 and 1.75+-0.05 Msun, respectively. However, analysis of the stellar parameters on a Hertzsprung-Russell Diagram yields ages at least 5 MY older. Both stars are rapid rotators. The discrepancy between the two types of analyses has a natural explanation in gravitational darkening.
The energy states in semiconductor quantum dots are discrete as in atoms, and quantum states can be coherently controlled with resonant laser pulses. Long coherence times allow the observation of Rabi-flopping of a single dipole transition in a solid state device, for which occupancy of the upper state depends sensitively on the dipole moment and the excitation laser power. We report on the robust preparation of a quantum state using an optical technique that exploits rapid adiabatic passage from the ground to an excited state through excitation with laser pulses whose frequency is swept through the resonance. This observation in photoluminescence experiments is made possible by introducing a novel optical detection scheme for the resonant electron hole pair (exciton) generation.
62 - M. Simon , R. C. Obbie 2008
We report an analysis of twins of spectral types F or later in the 9th Catalog of Spectroscopic Binaries (SB9). Twins, the components of binaries with mass ratio within 2% of 1.0, are found among the binaries with primaries of F and G spectral type. They are most prominent among the binaries with periods less than 43 days, a cutoff first identified by Lucy. Within the subsample of binaries with P<43 days, the twins do not differ from the other binaries in their distributions of periods (median P~7d), masses, or orbital eccentricities. Combining the mass ratio distribution in the SB9 in the mass range 0.6 to 0.85 Msun with that measured by Mazeh et al. for binaries in the Carney-Latham high proper motion survey, we estimate that the frequency of twins in a large sample of spectroscopic binaries is about 3%. Current theoretical understanding indicates that accretion of high specific angular momentum material by a protobinary tends to equalize its masses. We speculate that the excess of twins is produced in those star forming regions where the accretion processes were able to proceed to completion for a minority of protobinaries. This predicts that the components of a young twin may appear to differ in age and that, in a sample of spectroscopic binaries in a star formation region, the twins are, on average, older than the binaries with mass ratios much smaller than 1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا