ترغب بنشر مسار تعليمي؟ اضغط هنا

The SIM Lite mission will undertake several planet surveys. One of them, the Deep Planet Survey, is designed to detect Earth-mass exoplanets in the habitable zones of nearby main sequence stars. A double blind study has been conducted to assess the c apability of SIM to detect such small planets in a multi-planet system where several giant planets might be present. One of the tools which helped in deciding if the detected planets were actual was an orbit integrator using the publicly available HNBody code so that the orbit solutions could be analyzed in terms of temporal stability over many orbits. In this contribution, we describe the implementation of this integrator and analyze the different blind test solutions. We discuss also the usefulness of this method given that some planets might be not detected but still affect the overall stability of the system.
48 - M. Shao , B. Nemati 2008
SIM-Lite is an astrometric interferometer being designed for sub-microarcsecond astrometry, with a wide range of applications from searches for Earth-analogs to determining the distribution of dark matter. SIM-Lite measurements can be limited by rand om and systematic errors, as well as astrophysical noise. In this paper we focus on instrument systematic errors and report results from SIM-Lites interferometer testbed. We find that, for narrow-angle astrometry such as used for planet finding, the end-of-mission noise floor for SIM-Lite is below 0.035 uas.
223 - Y.J. Sun , C. Li , M. Shao 2008
A new kind of Multi-gap Resistive Plate Chamber (MRPC) has been built for the large-area Muon Telescope Detector (MTD) for the STAR experiment at RHIC. These long read-out strip MRPCs (LMRPCs) have an active area of 87.0 x 17.0 cm2 and ten 250 um-thi ck gas gaps arranged as a double stack. Each read-out strip is 2.5 cm wide and 90 cm long. The signals are read-out at both ends of each strip. Cosmic ray tests indicate a time resolution of ~70 ps and a detection efficiency of greater than 95%. Beam tests performed at T963 at Fermilab indicate a time resolution of 60-70 ps and a spatial resolution of ~1 cm along the strip direction.
50 - M. Shao 2007
The past two Decadal Surveys in Astronomy and Astrophysics recommended the completion of a space-based interferometry mission, known today as SIM PlanetQuest, for its unique ability to detect and characterize nearby rocky planets (Bahcall 1991, McKee & Taylor 2001), as well as contributions to a broad range of problems in astrophysics. Numerous committees of the National Research Council as well as NASA Roadmaps have similarly highlighted SIM as the one technology that offers detection and characterization of rocky planets around nearby stars and which is technically ready. To date, SIM remains the only program with the capability of detecting and confirming rocky planets in the habitable zones of nearby solar-type stars. Moreover, SIM measures masses and three-dimensional orbits of habitable planets around nearby stars (within 25 pc); these are the only stars for which follow-up by other techniques is feasible, such as space-based spectroscopy, ground-based interferometry, and of course TPF.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا