ترغب بنشر مسار تعليمي؟ اضغط هنا

Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly io nized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.
129 - S. Zhdanov 2008
Experimental results on an auto-oscillatory pattern observed in a complex plasma are presented. The experiments are performed with an argon plasma which is produced under microgravity conditions using a capacitively-coupled rf discharge at low power and gas pressure. The observed intense wave activity in the complex plasma cloud correlates well with the low-frequency modulation of the discharge voltage and current and is initiated by periodic void contractions. Particle migrations forced by the waves are of long-range repulsive and attractive character.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا