ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a method to study the magnetic properties of a disordered Ising kagome lattice. The model considers small spin clusters with infinite-range disordered couplings and short-range ferromagnetic (FE) or antiferromagnetic interactions. The corr elated cluster mean-field theory is used to obtain an effective single-cluster problem. A finite disorder intensity in FE kagome lattice introduces a cluster spin-glass (CSG) phase. Nevertheless, an infinitesimal disorder stabilizes the CSG behavior in the geometrically frustrated kagome system. Entropy, magnetic susceptibility and spin-spin correlation are used to describe the interplay between disorder and geometric frustration (GF). We find that GF plays an important role in the low-disorder CSG phase. However, the increase of disorder can rule out the effect of GF.
We propose using the optomechanical interaction to create artificial magnetic fields for photons on a lattice. The ingredients required are an optomechanical crystal, i.e. a piece of dielectric with the right pattern of holes, and two laser beams wit h the right pattern of phases. One of the two proposed schemes is based on optomechanical modulation of the links between optical modes, while the other is an lattice extension of optomechanical wavelength-conversion setups. We illustrate the resulting optical spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov-Bohm effect. Moreover, wWe also briefly describe the gauge fields acting on the synthetic dimension related to the phonon/photon degree of freedom. These can be generated using a single laser beam impinging on an optomechanical array.
Recent progress in optomechanical systems may soon allow the realization of optomechanical arrays, i.e. periodic arrangements of interacting optical and vibrational modes. We show that photons and phonons on a honeycomb lattice will produce an optica lly tunable Dirac-type band structure. Transport in such a system can exhibit transmission through an optically created barrier, similar to Klein tunneling, but with interconversion between light and sound. In addition, edge states at the sample boundaries are dispersive and enable controlled propagation of photon-phonon polaritons.
Topological states of matter are particularly robust, since they exploit global features insensitive to local perturbations. In this work, we describe how to create a Chern insulator of phonons in the solid state. The proposed implementation is based on a simple setting, a dielectric slab with a suitable pattern of holes. Its topological properties can be wholly tuned in-situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This would be an example of a Chern insulator produced from the interaction between two physically very different particle species, photons and phonons.
166 - M. Schmidt , Zhe Wang , Ch. Kant 2012
We report on optical transmission spectroscopy of the Cr-based frustrated triangular antiferromagnets CuCrO2 and alpha-CaCr2O4, and the spinels CdCr2O4 and ZnCr2O4 in the near-infrared to visible-light frequency range. We explore the possibility to s earch for spin correlations far above the magnetic ordering temperature and for anomalies in the magnon lifetime in the magnetically ordered state by probing exciton-magnon sidebands of the spin-forbidden crystal-field transitions of the Cr3+ ions (spin S = 3/2). In CuCrO2 and alpha-CaCr2O4 the appearance of fine structures below T_N is assigned to magnon sidebands by comparison with neutron scattering results. The temperature dependence of the line width of the most intense sidebands in both compounds can be described by an Arrhenius law. For CuCrO2 the sideband associated with the 4A2 -> 2T2 transition can be observed even above T_N. Its line width does not show a kink at the magnetic ordering temperature and can alternatively be described by a Z2 vortex scenario proposed previously for similar materials. The exciton-magnon features in alpha-CaCr2O4 are more complex due to the orthorhombic distortion. While for CdCr2O4 magnon sidebands are identified below T_N and one sideband excitation is found to persist across the magnetic ordering transition, only a weak fine structure related to magnetic ordering has been observed in ZnCr2O4.
We report on magnetic susceptibility and specific heat measurements of the cubic helimagnet FeGe in external magnetic fields and temperatures near the onset of long-range magnetic order at T_C=278.2(3)K. Pronounced anomalies in the field-dependent ch i_ac(H) data as well as in the corresponding imaginary part chi_ac(H) reveal a precursor region around T_C in the magnetic phase diagram. The occurrence of a maximum at T_0=279.6K in the zero-field specific heat data indicates a second order transition into a magnetically ordered state. A shoulder evolves above this maximum as a magnetic field is applied. The field dependence of both features coincides with crossover lines from the field-polarized to the paramagnetic state deduced from chi_ac(T) at constant magnetic fields. The experimental findings are analyzed within the standard Dzyaloshinskii theory for cubic helimagnets. The remarkable multiplicity of modulated precursor states and the complexity of the magnetic phase diagram near the magnetic ordering are explained by the change of the character of solitonic inter-core interactions and the onset of specific confined chiral modulations in this area.
56 - Ch. Kant , M. Schmidt , Z. Wang 2011
We report a linear dependence of the phonon splitting Deltaomega on the non-dominant exchange coupling constant J_{nd} in the antiferromagnetic transition-metal monoxides MnO, FeO, CoO, NiO, and in the frustrated antiferromagnetic oxide spinels CdCr2 O4, MgCr2O4, and ZnCr2O4. It directly confirms the theoretical prediction of an exchange induced splitting of the zone-centre optical phonon for the monoxides and explains the magnitude and the change of sign of the phonon splitting on changing the sign of the non-dominant exchange also in the frustrated oxide spinels. The experimentally found linear relation hbarDeltaomega = beta J_{nd} S^2 with slope beta = 3.7 describes the splitting for both systems and agrees with the observations in the antiferromagnets KCoF3 and KNiF3 with perovskite structure and negligible next-nearest neighbour coupling. The common behavior found for very different classes of cubic antiferromagnets suggests a universal dependence of the exchange-induced phonon splitting at the antiferromagnetic transition on the non-dominant exchange coupling.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا