ترغب بنشر مسار تعليمي؟ اضغط هنا

The central engines of Seyfert galaxies are thought to be enshrouded by geometrically thick gas and dust structures. In this article, we derive observable properties for a self-consistent model of such toroidal gas and dust distributions, where the g eometrical thickness is achieved and maintained with the help of X-ray heating and radiation pressure due to the central engine. Spectral energy distributions (SEDs) and images are obtained with the help of dust continuum radiative transfer calculations with RADMC-3D. For the first time, we are able to present time-resolved SEDs and images for a physical model of the central obscurer. Temporal changes are mostly visible at shorter wavelengths, close to the combined peak of the dust opacity as well as the central source spectrum and are caused by variations in the column densities of the generated outflow. Due to the three-component morphology of the hydrodynamical models -- a thin disc with high density filaments, a surrounding fluffy component (the obscurer) and a low density outflow along the rotation axis -- we find dramatic differences depending on wavelength: whereas the mid-infrared images are dominated by the elongated appearance of the outflow cone, the long wavelength emission is mainly given by the cold and dense disc component. Overall, we find good agreement with observed characteristics, especially for those models, which show clear outflow cones in combination with a geometrically thick distribution of gas and dust, as well as a geometrically thin, but high column density disc in the equatorial plane.
We present a high resolution simulation of an idealized model to explain the origin of the two young, counter-rotating, sub-parsec scale stellar disks around the supermassive black hole SgrA* at the Center of the Milky Way. In our model, the collisio n of a single molecular cloud with a circum-nuclear gas disk (similar to the one observed presently) leads to multiple streams of gas flowing towards the black hole and creating accretion disks with angular momentum depending on the ratio of cloud and circum-nuclear disk material. The infalling gas creates two inclined, counter-rotating sub-parsec scale accretion disks around the supermassive black hole with the first disk forming roughly 1 Myr earlier, allowing it to fragment into stars and get dispersed before the second, counter-rotating disk forms. Fragmentation of the second disk would lead to the two inclined, counter-rotating stellar disks which are observed at the Galactic Center. A similar event might be happening again right now at the Milky Way Galactic Center. Our model predicts that the collision event generates spiral-like filaments of gas, feeding the Galactic Center prior to disk formation with a geometry and inflow pattern that is in agreement with the structure of the so called mini-spiral that has been detected in the Galactic Center.
Warm gas and dust surround the innermost regions of active galactic nuclei (AGN). They provide the material for accretion onto the super-massive black hole and they are held responsible for the orientation-dependent obscuration of the central engine. The AGN-heated dust distributions turn out to be very compact with sizes on scales of about a parsec in the mid-infrared. Only infrared interferometry currently provides the necessary angular resolution to directly study the physical properties of this dust. Size estimates for the dust distributions derived from interferometric observations can be used to construct a size--luminosity relation for the dust distributions. The large scatter about this relation suggests significant differences between the dust tori in the individual galaxies, even for nuclei of the same class of objects and with similar luminosities. This questions the simple picture of the same dusty doughnut in all AGN. The Circinus galaxy is the closest Seyfert 2 galaxy. Because its mid-infrared emission is well resolved interferometrically, it is a prime target for detailed studies of its nuclear dust distribution. An extensive new interferometric data set was obtained for this galaxy. It shows that the dust emission comes from a very dense, disk-like structure which is surrounded by a geometrically thick, similarly warm dust distribution as well as significant amounts of warm dust within the ionisation cone.
We investigate the origin and fate of the recently discovered gas cloud G2 close to the Galactic Center. Our hydrodynamical simulations focussing on the dynamical evolution of the cloud in combination with currently available observations favor two s cenarios: a Compact Cloud which started around the year 1995 and a Spherical Shell of gas, with an apocenter distance within the disk(s) of young stars and a radius of a few times the size of the Compact Cloud. The former is able to explain the detected signal of G2 in the position-velocity diagram of the Br gamma emission of the year 2008.5 and 2011.5 data. The latter can account for both, G2s signal as well as the fainter extended tail-like structure G2t seen at larger distances from the black hole and smaller velocities. In contrast, gas stripped from a compact cloud by hydrodynamical interactions is not able to explain the location of the detected G2t emission in the observed position-velocity diagrams. This favors the Spherical Shell Scenario and might be a severe problem for the Compact Cloud as well as the so-called Compact Source Scenario. From these first idealized simulations we expect a roughly constant feeding of the supermassive black hole through a nozzle-like structure over a long period, starting shortly after the closest approach in 2013.51 for the Compact Cloud. If the matter accretes in the hot accretion mode, we do not expect a significant boost of the current activity of Sgr A* for the Compact Cloud model, but a boost of the average infrared and X-ray luminosity by roughly a factor of 80 for the Spherical Shell scenario with order of magnitude variations on a timescale of a few months. The near-future evolution of the cloud will be a sensitive probe of the conditions of the gas distribution in the milli-parsec environment of the massive black hole in the Galactic Center.
High resolution observations with the NIR adaptive optics integral field spectrograph SINFONI at the VLT proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensiona l high resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, focusing on stellar mass loss. This leads to clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec scale region (accessible via SINFONI observations) to the (sub-)parsec scale region (observable with the MIDI instrument and via water maser emission). In this work, we concentrate on the effects of a parametrised turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Input parameters are constrained by observations of the nearby Seyfert 2 galaxy NGC 1068. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8 to 0.9 pc, gas masses of 1.0e6 solar masses and mass transfer rates of 0.025 solar masses per year through the inner rim of the disc. This shows that our large scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well.
Recently, the existence of geometrically thick dust structures in Active Galactic Nuclei (AGN) has been directly proven with the help of mid-infrared interferometry. The observations are consistent with a two-component model made up of a geometricall y thin and warm central disk, surrounded by a colder, fluffy torus component. In an exploratory study, we investigate one possible physical mechanism, which could produce such a structure, namely the effect of stellar feedback from a young nuclear star cluster on the interstellar medium in centres of AGN. The model is realised with the help of the hydrodynamics code TRAMP. We follow the evolution of the interstellar medium by taking discrete mass loss and energy ejection due to stellar processes, as well as optically thin radiative cooling into account. In a post-processing step, we calculate observable quantities (spectral energy distributions and images) with the help of the radiative transfer code MC3D. The interplay between injection of mass, supernova explosions and radiative cooling leads to a two-component structure made up of a cold geometrically thin, but optically thick and very turbulent disk residing in the vicinity of the angular momentum barrier, surrounded by a filamentary structure. The latter consists of cold long radial filaments flowing towards the disk and a hot tenuous medium in between, which shows both inwards and outwards directed motions. This modelling is able to reproduce the range of observed neutral hydrogen column densities of a sample of Seyfert galaxies as well as the relation between them and the strength of the silicate 10 micron spectral feature. Despite being quite crude, our mean Seyfert galaxy model is even able to describe the SEDs of two intermediate type Seyfert galaxies observed with the Spitzer Space Telescope.
180 - M. Schartmann 2008
Recently, the MID-infrared Interferometric instrument (MIDI) at the VLTI has shown that dust tori in the two nearby Seyfert galaxies NGC 1068 and the Circinus galaxy are geometrically thick and can be well described by a thin, warm central disk, surr ounded by a colder and fluffy torus component. By carrying out hydrodynamical simulations with the help of the TRAMP code (Klahr et al. 1999), we follow the evolution of a young nuclear star cluster in terms of discrete mass-loss and energy injection from stellar processes. This naturally leads to a filamentary large scale torus component, where cold gas is able to flow radially inwards. The filaments open out into a dense and very turbulent disk structure. In a post-processing step, we calculate observable quantities like spectral energy distributions or images with the help of the 3D radiative transfer code MC3D (Wolf 2003). Good agreement is found in comparisons with data due to the existence of almost dust-free lines of sight through the large scale component and the large column densities caused by the dense disk.
148 - M. Schartmann 2008
Tori of Active Galactic Nuclei are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the hot gas as well as by the energetic radiation of the accretion disk, the dust is often assumed t o be distributed in clouds. In our new 3D model of AGN dust tori, the torus is modelled as a wedge-shaped disk in which dusty clouds are randomly distributed, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. To this end, we employ radiative transfer calculations with the help of the 3D Monte Carlo code MC3D. In a second step, interferometric visibilities are calculated from the simulated surface brightness distributions, which can be directly compared to observations with the MIDI instrument. The radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 micron-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the torus, due to shadowing effects of clouds there. This explains failure and success of previous modelling efforts of clumpy tori. After adapting the parameters of our clumpy standard model to the circumstances of the Seyfert 2 Circinus galaxy, it can qualitatively explain recent mid-infrared interferometric observations performed with MIDI, as well as high resolution spectral data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا