ترغب بنشر مسار تعليمي؟ اضغط هنا

This work introduces an integrative approach based on Q-analysis with machine learning. The new approach, called Neural Hypernetwork, has been applied to a case study of pulmonary embolism diagnosis. The objective of the application of neural hyper-n etwork to pulmonary embolism (PE) is to improve diagnose for reducing the number of CT-angiography needed. Hypernetworks, based on topological simplicial complex, generalize the concept of two-relation to many-body relation. Furthermore, Hypernetworks provide a significant generalization of network theory, enabling the integration of relational structure, logic and analytic dynamics. Another important results is that Q-analysis stays close to the data, while other approaches manipulate data, projecting them into metric spaces or applying some filtering functions to highlight the intrinsic relations. A pulmonary embolism (PE) is a blockage of the main artery of the lung or one of its branches, frequently fatal. Our study uses data on 28 diagnostic features of 1,427 people considered to be at risk of PE. The resulting neural hypernetwork correctly recognized 94% of those developing a PE. This is better than previous results that have been obtained with other methods (statistical selection of features, partial least squares regression, topological data analysis in a metric space).
Nanoelectromechanical Systems (NEMS) are among the best candidates to measure interactions at nanoscale [1-6], especially when resonating oscillators are used with high quality factor [7, 8]. Despite many efforts [9, 10], efficient and easy actuation in NEMS remains an issue [11]. The mechanism that we propose, thermally mediated Center Of Mass (COM) displacements, represents a new actuation scheme for NEMS and MEMS. To demonstrate this scheme efficiency we show how mechanical nanodis- placements of a MEMS is triggered using modulated X-ray microbeams. The MEMS is a microswing constituted by a Ge microcrystal attached to a Si microcantilever. The interaction is mediated by the Ge absorption of the intensity modulated X-ray microbeam impinging on the microcrystal. The small but finite thermal expansion of the Ge microcrystal is large enough to force a nanodisplacement of the Ge microcrystal COM glued on a Si microlever. The inverse mechanism can be envisaged: MEMS can be used to shape X-ray beams. A Si microlever can be a high frequency X-ray beam chopper for time studies in biology and chemistry.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا