ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a calculation of the effective cross section $sigma_{eff}$, an important ingredient in the description of double parton scattering in proton-proton collisions. Our theoretical approach makes use of a Light-Front quark model as framework to calculate the double parton distribution functions at low-resolution scale. QCD evolution is implemented to reach the experimental scale. The obtained $sigma_{eff}$, when averaged over the longitudinal momentum fractions of the interacting partons, $x_i$, is consistent with the present experimental scenario. However the result of the complete calculation shows a dependence of $sigma_{eff}$ on $x_i$, a feature not easily seen in the available data, probably because of their low accuracy. Measurements of $sigma_{eff}$ in restricted $x_i$ regions are addressed to obtain indications on double parton correlations, a novel and interesting aspect of the three dimensional structure of the nucleon.
Double parton correlations, having effects on the double parton scattering processes occurring in high-energy hadron-hadron collisions, for example at the LHC, are studied in the valence quark region, within constituent quark models. In this framewor k, two particle correlations are present without any additional prescription, at variance with what happens, for example, in independent particle models, such as the MIT bag model in its simplest version. From the present analysis, conclusions similar to the ones obtained recenty in a modified version of the bag model can be drawn: correlations in the longitudinal momenta of the active quarks are found to be sizable, while those in transverse momentum are much smaller. However, the used framework allows to understand clearly the dynamical origin of the correlations. In particular, it is shown that the small size of the correlations in transverse momentum is a model dependent result, which would not occur if models with sizable quark orbital angular momentum were used to describe the proton. Our analysis permits therefore to clarify the dynamical origin of the double parton correlations and to establish which, among the features of the results, are model independent. The possibility to test experimentally the studied effects is discussed.
419 - M. Rinaldi , S. Scopetta 2012
An impulse approximation analysis is described of the generalized parton distributions (GPDs) H and E of the 3He nucleus, quantities which are accessible in hard exclusive processes, such as coherent deeply virtual Compton scattering (DVCS). The calc ulation is based on the Av18 interaction. The electromagnetic form factors are correctly recovered in the proper limits. The sum of the GPDs H and E of 3He, at low momentum transfer, is largely dominated by the neutron contribution, thanks to the unique spin structure of 3He. This nucleus is therefore very promising for the extraction of the neutron information. By increasing the momentum transfer, however, this conclusion is somehow hindered by the the fast growing proton contribution. Besides, even when the neutron contribution to the GPDs of 3He is largely dominating, the procedure of extracting the neutron GPDs from it could be, in principle, nontrivial. A technique is therefore proposed, independent on both the nuclear potential and the nucleon model used in the calculation, able to take into account the nuclear effects included in the IA analysis and to safely extract the neutron information at values of the momentum transfer large enough to allow the measurements. Thanks to this observation, coherent DVCS should be considered a key experiment to access the neutron GPDs and, in turn, the orbital angular momentum of the partons in the neutron.
343 - M. Rinaldi , S. Scopetta 2012
The generalized parton distribution H and E of the 3He nucleus, which could be measured in hard exclusive processes, such as coherent deeply virtual Compton scattering, are thoroughly analyzed in impulse approximation, within the Av18 interaction. It is found that their sum is dominated to a large extent by the neutron contribution: The peculiar spin structure of 3He makes this target unique for the extraction of the neutron information. This observation could allow to access for the first time, in dedicated experiments, the orbital angular momentum of the partons in the neutron.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا