ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion the physical cause of which is a mystery. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmi c expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this dark energy corresponds to a cosmological constant, perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies, we measure the anisotropy parameter b = 0.70 +/- 0.26, which corresponds to a growth rate of structure at that time of f = 0.91 +/- 0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. This could be achieved with a further factor-of-ten increase in the sampled volume at similar redshift.
In this paper we present CRASH_alpha, the first radiative transfer code for cosmological application that follows the parallel propagation of Ly_alpha and ionizing photons. CRASH_alpha is a version of the continuum radiative transfer code CRASH with a new algorithm to follow the propagation of Ly_alpha photons through a gas configuration whose ionization structure is evolving. The implementation introduces the time evolution for Ly_alpha photons (a feature commonly neglected in line radiative transfer codes) and, to reduce the computational time needed to follow each scattering, adopts a statistical approach to the Ly_alpha treatment by making extensive use of pre-compiled tables. With this statistical approach we experience a drastic increase of the computational speed and, at the same time, an excellent agreement with the full Ly_alpha radiative transfer computations of the code MCLy_alpha. We find that the emerging spectra keep memory of the ionization history which generates a given ionization configuration of the gas and, to properly account for this effect, a self-consistent joint evolution of line and ionizing continuum radiation as implemented in CRASH_alpha is necessary. A comparison between the results from our code and from Ly_alpha scattering alone on a fixed HI density field shows that the extent of the difference between the emerging spectra depends on the particular configuration considered, but it can be substantial and can thus affect the physical interpretation of the problem at hand. These differences should furthermore be taken into account when computing the impact of the Ly_alpha radiation on e.g. the observability of the 21 cm line from neutral hydrogen at epochs preceeding complete reionization.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا