ترغب بنشر مسار تعليمي؟ اضغط هنا

A numerical study of the energy relaxation and conductivity of the Coulomb glass is presented. The role of many-electron transitions is studied by two complementary methods: a kinetic Monte Carlo algorithm and a master equation in configuration space method. A calculation of the transition rate for two-electron transitions is presented, and the proper extension of this to multi-electron transitions is discussed. It is shown that two-electron transitions are important in bypassing energy barriers which effectively block sequential one-electron transitions. The effect of two-electron transitions is also discussed.
We have studied the conductance distribution function of two-dimensional disordered noninteracting systems in the crossover regime between the diffusive and the localized phases. The distribution is entirely determined by the mean conductance, g, in agreement with the strong version of the single-parameter scaling hypothesis. The distribution seems to change drastically at a critical value very close to one. For conductances larger than this critical value, the distribution is roughly Gaussian while for smaller values it resembles a log-normal distribution. The two distributions match at the critical point with an often appreciable change in behavior. This matching implies a jump in the first derivative of the distribution which does not seem to disappear as system size increases. We have also studied 1/g corrections to the skewness to quantify the deviation of the distribution from a Gaussian function in the diffusive regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا