ترغب بنشر مسار تعليمي؟ اضغط هنا

81 - M. Orienti 2015
Relativistic jets are one of the most powerful manifestations of the release of energy related to the supermassive black holes at the centre of active galactic nuclei (AGN). Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. Recent high resolution radio observations of flaring objects locate the high-energy emitting region downstream the jet at parsec scale distance from the central engine, posing questions on the nature of the seed photons upscattered to gamma-rays. Furthermore, monitoring campaigns of the most active blazars indicate that not all the high energy flares have the same characteristics in the various energy bands, even from the same source, making the interpretation of the mechanism responsible for the high-energy emission not trivial. Although the variability of the most luminous blazars is well explained by the shock-in-jet scenario, the sub-class of TeV emitting objects suggests a more complex emission model with velocity gradients in a structured jet. This contribution presents results obtained by recent multiwavelength campaigns of blazars aimed at studying the radio and gamma-ray connection and the physical mechanisms at the basis of the emission in these low and high energy bands.
146 - M. Orienti 2015
High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per cent of the AGN population observed by Fermi so far, and gamma-ray flaring activity from these sources is even more uncommon. The characterization of the radio-to-gamma-ray properties of high redshift blazars represent a powerful tool for the study of both the energetics of such extreme objects and the Extragalactic Background Light. We present results of a multi-band campaign on TXS 0536+145, which is the highest redshift flaring gamma-ray blazar detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6x10^49 erg/s, which is comparable with the luminosity observed from the most powerful blazars. The physical properties derived from the multi-wavelength observations are then compared with those shown by the high redshift population. In addition preliminary results from the high redshift flaring blazar PKS 2149-306 will be discussed.
61 - M. Orienti 2014
Despite targets of many multiwavelength campaigns, the main physical processes at work in AGN are still under debate. In particular the origin of the radio emission and the mechanisms involved are among the open questions in astrophysics. In the radi o-loud AGN population the radio emission is linked to the presence of bipolar outflows of relativistic jets. However, the large majority of the AGN population do not form powerful highly-relativistic jets on kpc scales and are characterized by radio luminosity up to 10^23 W/Hz at 1.4 GHz, challenging our knowledge on the physical processes at the basis of the radio emission in radio-quiet objects. The main mechanisms proposed so far are synchrotron radiation from mildly relativistic mini-jets, thermal cyclo-synchrotron emission by low-efficiency accretion flow (like ADAF or ADIOS), or thermal free-free emission from the X-ray heated corona or wind. The difficulty in understanding the main mechanism involved is related to the weakness of these objects, which precludes the study of non-local radio-quiet AGN. Multifrequency, high-sensitivity radio observations are crucial to constrain the nature of the power engine, and they may help in distinguishing between the contribution from star formation and AGN activity. The advent of the SKA, with its sub-arcsecond resolution and unprecedented sensitivity will allow us to investigate these processes in radio-quiet AGN, even at high redshift for the first time. Both the broad-band radio spectrum and the polarization information will help us in disentangling between non-thermal and thermal origin of the radio emission. The jump in sensitivity of a few order of magnitudes at the (sub-)uJy level will enable us to detect radio emission from a large number of radio-quiet AGN at high redshift, providing a fundamental step in our understanding of their cosmological evolution. (Abridged)
We analyzed data in polarized intensity obtained with the Very Long Baseline Array (VLBA) at twelve epochs (one observation per month from January to December 2011) at 15, 24, and 43 GHz. For the absolute orientation of the electric vector position a ngles (EVPA) we used the D-terms method. We also used gamma-ray data from the Fermi Large Area Telescope on weekly time bins throughout 2011. The source shows polarized emission, and its properties vary with time, frequency, and location along the jet. The core mean polarization fraction is generally between 1% and 2%, with a 4% peak at 43 GHz in March; the polarization angle is variable, mainly at 15 GHz, where it changes frequently, and less so at 43 GHz, where it oscillates in the range 114 - 173 deg. The jet polarization properties are more stable, with a fractional polarization of around 16% and a polarization angle nearly perpendicular to the jet axis. The average flux and photon index at gamma-ray energies are (17.7+-0.5)x10^8 ph cm^-2 s^-1 and the photon index is 1.77+-0.02. The gamma-ray light curve shows variability, with a main peak that appears to be associated with the peak in the core polarized emission at 43 GHz, as well as with the total intensity light curve. A discrete correlation function analysis yields a correlation coefficient of 0.54 at zero delay, with a significance level above 99.7%. We accurately determine the polarization properties of Mrk 421, both in the core and in the jet region. The radio and gamma-ray light curves are correlated. The observed EVPA variability at 15 GHz is partly due to opacity and partly to a variable Faraday rotation effect. To explain the residual variability of the intrinsic polarization angle and the low degree of polarization in the core region, we invoke a blend of variable cross-polarized subcomponents with different polarization properties within the beam.
The Large Area Telescope on board the Fermi Gamma-ray Space Telescope detected a strong gamma-ray flare on 2011 May 15 from a source identified as 4C 49.22, a flat spectrum radio quasar also known as S4 1150+49. This blazar, characterised by a promin ent radio-optical-X-ray jet, was in a low gamma-ray activity state during the first years of Fermi observations. Simultaneous observations during the quiescent, outburst and post-flare gamma-ray states were obtained by Swift, Planck and optical-IR-radio telescopes (INAOE, Catalina CSS, VLBA, Metsahovi). The flare is observed from microwave to X-ray bands with correlated variability and the Fermi, Swift and Planck data for this FSRQ show some features more typical of BL Lac objects, like the synchrotron peak in the optical band that outshines the thermal blue-bump emission, and the X-ray spectral softening. Multi-epoch VLBA observations show the ejection of a new component close in time with the GeV gamma-ray flare. The radio-to-gamma-ray spectral energy distribution is modeled and fitted successfully for the outburst and the post-flare epochs using either a single flaring blob with two emission processes (synchrotron self Compton, and external-radiation Compton), and a two-zone model with SSC-only mechanism.
332 - M. Orienti 2014
We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high gamma-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becom ing the gamma-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6 x 10^49 erg/s which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the gamma-ray source with TXS 0536+145. Both the radio and gamma-ray light curves show a similar behaviour, with the gamma-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the gamma-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The gamma-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift gamma-ray blazar population.
85 - F. DAmmando 2013
The discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets, in addition to blazars and radio galaxies. The existence of relativistic jet s also in this subclass of Seyfert galaxies opened an unexplored research space for our knowledge of the radio-loud AGNs. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
68 - F. DAmmando 2013
Before the launch of the Fermi satellite only two classes of AGNs were known to produce relativistic jets and thus emit up to the gamma-ray energy range: blazars and radio galaxies, both hosted in giant elliptical galaxies. The first four years of ob servations by the Large Area Telescope on board Fermi confirmed that these two are the most numerous classes of identified sources in the extragalactic gamma-ray sky, but the discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets. Considering that narrow-line Seyfert 1 galaxies seem to be typically hosted in spiral galaxy, this finding poses intriguing questions about the nature of these objects, the onset of production of relativistic jets, and the cosmological evolution of radio-loud AGN. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
87 - F. DAmmando 2013
The narrow-line Seyfert 1 galaxy SBS 0846+513 was first detected by the Large Area Telescope (LAT) on-board Fermi in 2011 June-July when it underwent a period of flaring activity. Since then, as Fermi continues to accumulate data on this source, its flux has been monitored on a daily basis. Two further gamma-ray flaring episodes from SBS 0846+513 were observed in 2012 May and August, reaching a daily peak flux integrated above 100 MeV of (50+/-12)x10^-8 ph/cm^2/s, and (73+/-14)x10^-8 ph/cm^2/s on May 24 and August 7, respectively. Three outbursts were detected at 15 GHz by the Owens Valley Radio Observatory 40-m telescope in 2012 May, 2012 October, and 2013 January, suggesting a complex connection with the gamma-ray activity. The most likely scenario suggests that the 2012 May gamma-ray flare may not be directly related to the radio activity observed over the same period, while the two gamma-ray flaring episodes may be related to the radio activity observed at 15 GHz in 2012 October and 2013 January. The gamma-ray flare in 2012 May triggered Swift observations that confirmed that SBS 0846+513 was also exhibiting high activity in the optical, UV and X-ray bands, thus providing a firm identification between the gamma-ray source and the lower-energy counterpart. We compared the spectral energy distribution (SED) of the flaring state in 2012 May with that of a quiescent state. The two SEDs, modelled as an external Compton component of seed photons from a dust torus, could be fitted by changing the electron distribution parameters as well as the magnetic field. No significant evidence of thermal emission from the accretion disc has been observed. Interestingly, in the 5 GHz radio luminosity vs. synchrotron peak frequency plot SBS 0846+513 seems to lie in the flat spectrum radio quasar part of the so-called `blazar sequence.
Global VLBI observations at 5 GHz have been performed to study the source morphology in 10 compact steep-spectrum (CSS) sources selected from the Peacock & Wall catalogue with the aim of finding asymmetric structures produced by the interaction with the ambient medium. The combination of these data and earlier 1.7-GHz observations allows the study of the spectral index distribution across the source structure and the unambiguous determination of the nature of each component. In seven sources we detected the core component with a flat or inverted spectrum. In six sources the radio emission has a two-sided morphology and comes mainly from steep-spectrum extended structures, like lobes, jets, and hotspots. Only one source, 0319+121, has a one-sided core-jet structure. In three out of the six sources with a two-sided structure the flux density arising from the lobes is asymmetric, and the brightest lobe is the one closest to the core, suggesting that the jets are expanding in an inhomogeneous ambient medium which may influence the source growth. The interaction between the jet and the environment may slow down the source expansion and enhance the luminosity due to severe radiative losses, likely producing an excess of CSS radio sources in flux density limited samples. The lobes of the other three asymmetric sources have a brighter-when-farther behaviour, in agreement with what is expected by projection and relativistic effects. Simultaneous VLA observations carried out to investigate the polarization properties of the targets detected significant polarized emission (~5.5%) only from the quasar 0319+121.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا