ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - S. Geprags , D. Mannix , M. Opel 2013
The quantitative understanding of converse magnetoelectric effects, i.e., the variation of the magnetization as a function of an applied electric field, in extrinsic multiferroic hybrids is a key prerequisite for the development of future spintronic devices. We present a detailed study of the strain-mediated converse magnetoelectric effect in ferrimagnetic Fe3O4 thin films on ferroelectric BaTiO3 substrates at room temperature. The experimental results are in excellent agreement with numerical simulation based on a two-region model. This demonstrates that the electric field induced changes of the magnetic state in the Fe3O4 thin film can be well described by the presence of two different ferroelastic domains in the BaTiO3 substrate, resulting in two differently strained regions in the Fe3O4 film with different magnetic properties. The two-region model allows to predict the converse magnetoelectric effects in multiferroic hybrid structures consisting of ferromagnetic thin films on ferroelastic substrates.
The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic d ouble perovskite Sr2CrReO6, grown as epitaxial thin film onto ferroelectric BaTiO3. As a function of temperature, the crystal-structure of BaTiO3 undergoes phase transitions, which induce qualitative changes in the magnetic anisotropy of the ferromagnet. We observe abrupt changes in the coercive field of up to 1.2T along with resistance changes of up to 6.5%. These results are attributed to the high sensitivity of the double perovskites to mechanical deformation.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا