ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally investigate a recently proposed optical excitation scheme [V.I. Yudin et al., Phys. Rev. A 82, 011804(R)(2010)] that is a generalization of Ramseys method of separated oscillatory fields and consists of a sequence of three excitatio n pulses. The pulse sequence is tailored to produce a resonance signal which is immune to the light shift and other shifts of the transition frequency that are correlated with the interaction with the probe field. We investigate the scheme using a single trapped 171Yb+ ion and excite the highly forbidden 2S1/2-2F7/2 electric-octupole transition under conditions where the light shift is much larger than the excitation linewidth, which is in the Hertz range. The experiments demonstrate a suppression of the light shift by four orders of magnitude and an immunity against its fluctuations.
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon g natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا