ترغب بنشر مسار تعليمي؟ اضغط هنا

The Landau-Lifshitz (LL) equation, originally proposed at the macrospin level, is increasingly used in Atomistic Spin Dynamic (ASD) models. The models are based on a spin Hamiltonian featuring atomic spins of fixed length, with the exchange introduce d using the Heisenberg formalism. ASD models are proving a powerful approach to the fundamental understanding of ultrafast magnetisation dynamics, including the prediction of the thermally induced magnetisation switching phenomenon in which the magnetisation is reversed using an ultrafast laser pulse in the absence of an externally applied field. The paper outlines the ASD model approach and considers the role and limitations of the LL equation in this context.
The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T*), at which the linear re versal mechanism occurs, are observed to decrease with system size whilst the temperature window T* < T < TC increases. The reversal paths close to the Curie temperature have been calculated, showing that for decreasing system size the reversal path becomes more elliptic at lower temperatures, consistent with the decrease in the Curie temperature arising from finite size effects. Calculations of the minimum pulse duration show faster switching in small grains and is qualitatively described by the Landau-Lifshitz-Bloch equation with finite size atomistic parameterization, which suggests that multiscale modeling of FePt down to a grain size of ~ 3.5 nm is possible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا