ترغب بنشر مسار تعليمي؟ اضغط هنا

What is the mass of the progenitor of the Sagittarius (Sgr) dwarf galaxy? Here, we reassemble the stellar debris using SDSS and 2MASS data to find the total luminosity and likely mass. We find that the luminosity is in the range 9.6-13.2 x10^7 solar luminosities or M_V ~ -15.1 - 15.5, with 70% of the light residing in the debris streams. The progenitor is somewhat fainter than the present-day Small Magellanic Cloud, and comparable in brightness to the M31 dwarf spheroidals NGC 147 and NGC 185. Using cosmologically motivated models, we estimate that the mass of Sgrs dark matter halo prior to tidal disruption was ~10^10 solar masses.
We apply the optimal filter technique to Sloan Digital Sky Survey photometry around Segue 1 and find that the outer parts of the cluster are distorted. There is strong evidence for ~ 1 degree elongations of extra-tidal stars, extending both eastwards and southwestwards of the cluster. The extensions have similar differential Hess diagrams to Segue 1. A Kolmogorov-Smirnov test suggests a high probability that both come from the same parent distribution. The location of Segue 1 is close to crossings of the tidal wraps of the Sagittarius stream. By extracting blue horizontal branch stars from Sloans spectral database, two kinematic features are isolated and identified with different wraps of the Sagittarius stream. We show that Segue 1 is moving with a velocity that is close to one of the wraps. At this location, we estimate that there are enough Sagittarius stars, indistinguishable from Segue 1 stars, to inflate the velocity dispersion and hence the mass-to-light ratio. All the available evidence is consistent with the interpretation that Segue 1 is a star cluster, originally from the Sagittarius galaxy, and now dissolving in the Milky Way.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا