ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first detections by the NASA K2 Mission of oscillations in solar-type stars, using short-cadence data collected during K2 Campaign,1 (C1). We understand the asteroseismic detection thresholds for C1-like levels of photometric performan ce, and we can detect oscillations in subgiants having dominant oscillation frequencies around $1000,rm mu Hz$. Changes to the operation of the fine-guidance sensors are expected to give significant improvements in the high-frequency performance from C3 onwards. A reduction in the excess high-frequency noise by a factor of two-and-a-half in amplitude would bring main-sequence stars with dominant oscillation frequencies as high as ${simeq 2500},rm mu Hz$ into play as potential asteroseismic targets for K2.
181 - R. Handberg , M. N. Lund 2014
One of the tasks of the Kepler Asteroseismic Science Operations Center (KASOC) is to provide asteroseismic analyses on Kepler Objects of Interest (KOIs). However, asteroseismic analysis of planetary host stars presents some unique complications with respect to data preprocessing, compared to pure asteroseismic targets. If not accounted for, the presence of planetary transits in the photometric time series often greatly complicates or even hinders these asteroseismic analyses. This drives the need for specialised methods of preprocessing data to make them suitable for asteroseismic analysis. In this paper we present the KASOC Filter, which is used to automatically prepare data from the Kepler/K2 mission for asteroseismic analyses of solar-like planet host stars. The methods are very effective at removing unwanted signals of both instrumental and planetary origins and produce significantly cleaner photometric time series than the original data. The methods are automated and can therefore easily be applied to a large number of stars. The application of the filter is not restricted to planetary hosts, but can be applied to any solar-like or red giant stars observed by Kepler/K2.
We present a novel method for estimating lower-limit surface gravities log g of Kepler targets whose data do not allow the detection of solar-like oscillations. The method is tested using an ensemble of solar-type stars observed in the context of the Kepler Asteroseismic Science Consortium. We then proceed to estimate lower-limit log g for a cohort of Kepler solar-type planet-candidate host stars with no detected oscillations. Limits on fundamental stellar properties, as provided by this work, are likely to be useful in the characterization of the corresponding candidate planetary systems. Furthermore, an important byproduct of the current work is the confirmation that amplitudes of solar-like oscillations are suppressed in stars with increased levels of surface magnetic activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا