ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an analysis of the spatial and chemical sub-structures in a remote halo field in the nearby giant elliptical galaxy Centaurus A (NGC~5128), situated at about 38 kpc from the centre of the galaxy. The observations were taken with the Advanc ed Camera for Surveys instrument on board the Hubble Space Telescope, and reach down to the horizontal branch. In this relatively small 3.8 kpc by 3.8 kpc field, after correcting for Poisson noise, we do not find any statistically strong evidence for the presence of small-scale sub-structures in the stellar spatial distribution on scales greater than 100 pc. However, we do detect the presence of significant small spatial-scale inhomogeneities in the stellar median metallicity over the surveyed field. We argue that these localized chemical substructures could be associated with not-fully mixed debris from the disruption of low mass systems. NGC 5128 joins the ranks of the late-type spiral galaxies the Milky Way, for which the stellar halo appears to be dominated by small-scale spatial sub-structures, and NGC~891, where localized metallicity variations have been detected in the inner extra-planar regions. This suggests that the presence of small-scale sub-structures may be a generic property of stellar halos of large galaxies.
Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red sequence lenticular galaxies and blue cloud galaxies, low mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally-driven gas flows toward the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red sequence or blue cloud galaxies, at fixed stellar mass, with location within the cluster.
Recent panoramic observations of the dominant spiral galaxies of the Local Group have revolutionized our view of how these galaxies assemble their mass. However, it remains completely unclear whether the properties of the outer regions of the Local G roup large spirals are typical. Here, we present the first panoramic view of a spiral galaxy beyond the Local Group, based on the largest, contiguous, ground-based imaging survey to date resolving the stellar halo of the nearest prime analogue of the Milky Way, NGC 891 (D~10 Mpc). The low surface brightness outskirts of this galaxy are populated by multiple, coherent, and vast substructures over the 90kpc * 90kpc extent of the survey. These include a giant stream, the first to be resolved into stars beyond the Local Group using ground-based facilities, that loops around the parent galaxy up to distances of ~50kpc. The bulge and the disk of the galaxy are found to be surrounded by a previously undetected large, flat and thick cocoon-like stellar structure at vertical and radial distances of up to ~15kpc and ~40kpc respectively.
We report the discovery of an extended globular cluster in a halo field in Centaurus A (NGC 5128), situated $sim 38kpc$ from the centre of that galaxy, imaged with the Advanced Camera for Surveys on board the Hubble Space Telescope. At the distance o f the galaxy, the half-light radius of the cluster is r_h ~ 17pc, placing it among the largest globular clusters known. The faint absolute magnitude of the star cluster, M_(V,o)=-5.2, and its large size render this object somewhat different from the population of extended globular clusters previously reported, making it the first firm detection in the outskirts of a giant galaxy of an analogue of the faint, diffuse globular clusters present in the outer halo of the Milky Way. The colour-magnitude diagram of the cluster, covering approximately the brightest four magnitudes of the red giant branch, is consistent with an ancient, i.e., older than ~8 Gyr, intermediate-metallicity, i.e., [M/H] ~-1.0 dex, stellar population. We also report the detection of a second, even fainter cluster candidate which would have r_h ~ 9pc, and M_(V,o)=-3.4 if it is at the distance of NGC 5128. The properties of the extended globular cluster and the diffuse stellar populations in its close vicinity suggest that they are part of a low mass accretion in the outer regions of NGC 5128.
93 - M. Mouhcine , R. Ibata 2010
Using the MegaCam imager on the Canada-France-Hawaii Telescope, we have resolved individual stars in the outskirts of the nearby large spiral galaxy M81 (NGC 3031) well below the tip of the red giant branch of metal-poor stellar populations over 60 k pc * 58 kpc. In this paper, we report the discovery of new young stellar systems in the outskirts of M81. The most prominent feature is a chain of clumps of young stars distributed along the extended southern HI tidal arm connecting M 81 and NGC 3077. The colour-magnitude diagrams of these stellar systems show plumes of bright main sequence stars and red supergiant stars, indicating extended events of star formation. The main sequence turn-offs of the youngest stars in the systems are consistent with ages of ~40 Myr. The newly reported stellar systems show strong similarities with other known young stellar systems in the debris field around M81, with their properties best explained by these systems being of tidal origin.
We use deep images taken with the Advanced Camera for Surveys on board the Hubble Space Telescope of the disk galaxy NGC 891, to search for globular cluster candidates. This galaxy has long been considered to be a close analog in size and structure t o the Milky Way and is nearly edge-on, facilitating studies of its halo population. These extraplanar ACS images, originally intended to study the halo field-star populations, reach deep enough to reveal even the faintest globular clusters that would be similar to those in the Milky Way. From the three pointings we have identified a total of 43 candidates after culling by object morphology, magnitude, and colour. We present (V,I) photometry for all of these, along with measurements of their effective radius and ellipticity. The 16 highest-rank candidates within the whole sample are found to fall in very much the same regions of parameter space occupied by the classic Milky Way globular clusters. Our provisional conclusion from this survey is that the total globular cluster population in NGC 891 as a whole may be almost as large as that of the Milky Way.
Like other starburst galaxies, M82 hosts compact, massive young star clusters that are interesting both in their own right and as benchmarks for population synthesis models. Can spectral synthesis models at resolutions around 1000 adequately reproduc e the near-IR spectral features and the energy distribution of these clusters between 0.8 and 2.4 microns? How do the derived cluster properties compare with previous results from optical studies? We analyse the spectra of 5 massive clusters in M82, using data acquired with the spectrograph SpeX on the InfraRed Telescope Facility (NASA/IRTF) and a new population synthesis tool with a highly improved near-IR extension, based on a recent collection of empirical and theoretical spectra of red supergiant stars. We obtain excellent fits across the near-IR with models at quasi-solar metallicity and a solar neighbourhood extinction law. Spectroscopy breaks a strong degeneracy between age and extinction in the near-IR colours in the red supergiant-dominated phase of evolution. The estimated near-IR ages cluster between 9 and 30 Myr, i.e. the ages at which the molecular bands due to luminous red supergiants are strongest in the current models. They do not always agree with optical spectroscopic ages. Adding optical data sometimes leads to the rejection of the solar neighbourhood extinction law. This is not surprising considering small-scale structure around the clusters, but it has no significant effect on the near-IR based spectroscopic ages. [abridged]
We use a 0.040 < z < 0.085 sample of 37866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determine d from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e., log Sigma < -0.8, to the periphery of galaxy clusters, i.e., log Sigma =~ 0.8, we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses < 10^{9.5} solar masses. These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا